These days the compound microscope is nearly as ubiquitous in physics and materials science labs as in biology and medical venues. In its simplest form, the instrument uses two-stage magnification—once with an objective lens close to the sample and once again with the eyepiece. The resulting image is formed at the real focal plane where we typically place our eye or a camera; its resolution is determined by the well-known Rayleigh diffraction limit, though various tricks can be employed to improve the resolution somewhat. The intermediate image, appearing within the microscope’s barrel at the so-called rear objective focal plane or Fourier plane, is rarely considered to have its own merits. But Texas Tech graduate student Daniel Dominguez, his adviser Luis Grave de Peralta, and their colleagues decided to take a closer look by inserting a second camera to image the Fourier plane. They fabricated photonic crystals (PCs) with nicely periodic...
Skip Nav Destination
Article navigation
1 November 2014
November 01 2014
Fourier plane imaging microscopy
Stephen G. Benka
Physics Today 67 (11), 20 (2014);
Citation
Stephen G. Benka; Fourier plane imaging microscopy. Physics Today 1 November 2014; 67 (11): 20. https://doi.org/10.1063/PT.3.2577
Download citation file:
PERSONAL SUBSCRIPTION
Purchase an annual subscription for $25. A subscription grants you access to all of Physics Today's current and backfile content.
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
149
Views
Citing articles via
The no-cloning theorem
William K. Wootters; Wojciech H. Zurek
Dense crowds follow their own rules
Johanna L. Miller
Focus on software, data acquisition, and instrumentation
Andreas Mandelis