Blood cells make up about 46% of human blood; the rest is protein-rich, aqueous plasma. Collectively, the liquid behaves as a non-Newtonian fluid: Unlike, say, water, whose viscosity is independent of flow rate, blood becomes less viscous the faster it flows. That behavior is crucial to understanding the flow instabilities that arise near aneurysms and vasoconstrictions, and it’s generally attributed entirely to the interactions between blood cells; the plasma itself is thought to be Newtonian. Although conventional shear measurements seem to confirm that view, new results obtained with a technique known as capillary breakup extensional rheometry suggest a more complicated picture. Researchers led by Christian Wagner (Saarland University, Saarbrücken, Germany) and Paulo Arratia (University of Pennsylvania) watched as capillary forces caused a liquid bridge of plasma to stretch, narrow, and eventually break. A Newtonian fluid would have broken up while the bridge was still relatively thick and would have left...
Skip Nav Destination
Article navigation
1 March 2013
March 01 2013
Citation
Ashley G. Smart; Blood plasma not so simple after all. Physics Today 1 March 2013; 66 (3): 20. https://doi.org/10.1063/PT.3.1906
Download citation file:
PERSONAL SUBSCRIPTION
Purchase an annual subscription for $25. A subscription grants you access to all of Physics Today's current and backfile content.
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.