Toward a compact microbeam radiotherapy system. The intense, narrow x-ray beams produced by synchrotrons are ideal for zapping tumors: With diameters of just 10–100 μm, the beams deliver a dose pattern with exquisite precision. What’s more, for some unknown reason, the beams’ high intensity is both more effective at killing tumors and less damaging to healthy tissue than are the lower-intensity beams used in conventional radiotherapy. But synchrotrons are large, expensive, and sparsely distributed. To circumvent those disadvantages, Sha Chang and Otto Zhou of the University of North Carolina in Chapel Hill are developing a compact, convenient method for bringing what’s known as microbeam radiotherapy into the clinic. Their approach entails producing x rays by slamming high-energy electrons into a tungsten anode, just as in dental cameras and other medical x-ray devices. But instead of boiling off the electrons from a metal cathode, they use the field effect to extract...

You do not currently have access to this content.