Highly charged ions challenge QED. Quantum electrodynamics (QED), the relativistic field theory describing interactions of light and charge, is justly celebrated for the astonishing accuracy with which it predicts, for example, the anomalous magnetic moment of the lone electron. But the reach of QED extends to substantially more complex systems. One class of objects amenable to experimental study and QED calculation includes helium-like ions with atomic number Z of about 25 and two orbiting electrons. In those three-body entities, the significant nuclear charge enhances the QED interactions. A recent experiment at the NIST Electron Beam Ion Trap facility by an international team led by Christopher Chantler (University of Melbourne, Australia) has made the most precise measurement to date for the energy of a specific atomic transition, called the w transition, in helium-like titanium 22Ti20+ and has obtained a value that disagrees with QED by three standard deviations....
Skip Nav Destination
Article navigation
1 December 2012
December 01 2012
Citation
Steven K. Blau; Highly charged ions challenge QED. Physics Today 1 December 2012; 65 (12): 22. https://doi.org/10.1063/PT.3.1812
Download citation file:
PERSONAL SUBSCRIPTION
Purchase an annual subscription for $25. A subscription grants you access to all of Physics Today's current and backfile content.
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.