As famously predicted by Hendrik Casimir in 1948, parallel conductors in a vacuum will attract each other because the conductors impose boundary conditions that affect the vacuum energy of the electromagnetic field (see the article by Steve Lamoreaux in Physics Today, February 2007, page 40). In general, the Casimir force depends on the shape of the conductors and its value is notoriously difficult to calculate, but research groups worldwide have been developing increasingly applicable computational techniques. Now a team at MIT has shown how tabletop measurements might provide the key information needed for the general calculation. The Casimir force may be expressed as an integral over frequency (ω) of correlation functions that involve electric and magnetic fields. In principle, those frequency-dependent correlations can be obtained in a suitably scaled tabletop experiment from measurements of how an antenna at one point responds to a current generated at a distant...
Skip Nav Destination
Article navigation
1 July 2010
July 01 2010
Citation
Steven K. Blau; Casimir force, antennas, and salt water. Physics Today 1 July 2010; 63 (7): 20. https://doi.org/10.1063/1.4796303
Download citation file:
PERSONAL SUBSCRIPTION
Purchase an annual subscription for $25. A subscription grants you access to all of Physics Today's current and backfile content.
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.