When chemically modified with water in a process called hydration, cement morphs into the durable binder that holds gravel, sand, and other additives together to form concrete—the most used manmade material in the world. The main constituent of hydrated cement is CaO-SiO2-H2O (called C-S-H) in the form of nanoscale colloidal aggregates, the size, shape, and packing of which are crucial to the ultimate strength and stability of concrete. The solid C-S-H nanoparticles are generally thought to be analogous to the claylike minerals tobermorite and jennite, mixed with calcium hydroxide. But new neutron-scattering studies by Jeffrey Thomas and Hamlin Jennings of Northwestern University and Andrew Allen of NIST in Gaithersburg, Maryland, show that C-S-H has a higher-than-expected atomic packing density. The mass density of solid C-S-H is roughly 10% higher than that of a mixture of its widely used mineral analogues with the same composition. The result...
Skip Nav Destination
Article navigation
1 June 2010
June 01 2010
Citation
Stephen G. Benka; Cement is denser than it’s cracked up to be. Physics Today 1 June 2010; 63 (6): 19. https://doi.org/10.1063/1.4796275
Download citation file:
PERSONAL SUBSCRIPTION
Purchase an annual subscription for $25. A subscription grants you access to all of Physics Today's current and backfile content.
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
23
Views
Citing articles via
Going with the flow in unstable surroundings
Savannah D. Gowen; Thomas E. Videbæk; Sidney R. Nagel
Measuring violin resonances
Elizabeth M. Wood
Focus on cryogenics, vacuum equipment, materials, and semiconductors
Andreas Mandelis