A trapped cloud of atoms chilled into a Bose–Einstein condensate is a single coherent structure. When extracted from the trap and allowed to propagate, it acts like a laser beam, except that the coherent waves are of matter rather than light. In a typical atom laser, the atoms are released and accelerated by gravity, a process that decreases the atom laser’s de Broglie wavelength. Now, physicists from the Institut d’Optique Graduate School in Palaiseau, France, have coupled atoms from an optomagnetic BEC trap to a horizontal optical waveguide, which generated a quasi-continuous atom laser, impervious to gravity and having a constant de Broglie wavelength of 0.5 μm. The RF coupling converts the atoms from a magnetic to a nonmagnetic state, and they emerge with a typical velocity of 9 mm/s and a velocity spread of just a few μm/s, driven along a confining beam of light, as shown in the...
Skip Nav Destination
Article navigation
1 February 2007
February 01 2007
Citation
Phillip F. Schewe; Guided atom laser. Physics Today 1 February 2007; 60 (2): 22–23. https://doi.org/10.1063/1.4796328
Download citation file:
PERSONAL SUBSCRIPTION
Purchase an annual subscription for $25. A subscription grants you access to all of Physics Today's current and backfile content.
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
27
Views
Citing articles via
The no-cloning theorem
William K. Wootters; Wojciech H. Zurek
Dense crowds follow their own rules
Johanna L. Miller
Focus on software, data acquisition, and instrumentation
Andreas Mandelis