Matter in bulk has both a microscopic and macroscopic description, with the latter going back to the very earliest days of thermodynamics. Of the common thermodynamic variables pressure (p) and temperature (T), it is temperature that has played by far the most prominent role in probing condensed matter and in our fundamental understanding of it. However, even as far back as 1660, Robert Boyle declared in his famous treatise commonly known as Touching the Spring of the Air that “perhaps the pressure of the air might have an interest in more phenomena than men have hitherto thought.” More than three centuries later, we can see how right he was, as systematic use of pressure has led to considerable insight into the properties of matter, especially its electronic properties. As A. Jayaraman noted when he was at AT&T Bell Laboratories, of all physical variables, pressure possesses one of the greatest ranges—over 60 orders of magnitude. At the high end, the pressures are those of the interiors of neutron stars; at the other, they gauge the conditions of the remotest vacua of outer space. And as Claude Berthelot demonstrated in early experiments on simple fluids, the pressure is not even obliged to be positive. (Negative pressure is created by, for example, pulling on the surface of a solid or on a wall of a sealed vessel full of fluid.)

1.
For summaries of recent results and techniques, see
Rev. High Pressure Sci. Technol.
7
(
1998
).
2.
A. N.
Zisman
,
I. V.
Aleksandrov
,
S. M.
Stishov
,
Phys. Rev. B
32
,
484
(
1985
).
A. P.
Jephcoat
et al.,
Phys. Rev. Lett.
59
,
2670
(
1987
).
K. A.
Goettel
,
J. H.
Eggert
,
I. F.
Silvera
,
W. C.
Moss
,
Phys. Rev. Lett.
62
,
665
(
1989
).
R.
Reichlin
et al.,
Phys. Rev. Lett.
62
,
669
(
1989
).
W.
Caldwell
et al.,
Science
277
,
930
(
1997
).
R.
Reichlin
,
M.
Ross
,
S.
Martin
,
K. A.
Goettel
,
Phys. Rev. Lett.
56
,
2858
(
1986
).
H. K.
Mao
et al.,
Science
246
,
649
(
1989
).
M. I.
Eremets
,
K.
Amaya
,
K.
Shimizu
,
T. C.
Kobayashi
,
Rev. High Pressure Sci. Technol.
7
,
469
(
1998
).
3.
A. S.
Balchan
,
H. S.
Driekamer
,
J. Chem. Phys.
34
,
1948
(
1961
).
Y.
Fujii
et al.,
Phys. Rev. Lett.
58
,
796
(
1987
).
R.
Reichlin
et al.,
Phys. Rev. B
49
,
3725
(
1994
).
K.
Shimizu
et al.,
J. Supercond.
7
,
921
(
1994
).
4.
M.
Hanfland
,
R. J.
Hemley
,
H. K.
Mao
,
Phys. Rev. Lett.
70
,
3760
(
1993
).
L.
Cui
,
N. H.
Chen
,
I. F.
Silvera
,
Phys. Rev. Lett.
74
,
4011
(
1995
).
B.
Edwards
,
N. W.
Ashcroft
,
Nature
,
388
,
652
(
1997
).
C. F.
Richardson
,
N. W.
Ashcroft
,
Phys. Rev. Lett.
78
,
118
(
1997
).
C.
Narayana
,
H.
Luo
,
J.
Orloff
,
A. L.
Ruoff
,
Nature
393
,
46
(
1998
).
5.
P.
Loubeyre
et al.,
Nature
383
,
702
(
1996
).
6.
S. T.
Weir
,
A. C.
Mitchell
,
W. J.
Nellis
,
Phys. Rev. Lett.
76
,
1860
(
1996
).
7.
L. B.
da Silva
et al.,
Phys. Rev. Lett.
78
,
483
(
1997
).
8.
A. F.
Goncharov
et al.,
Science
273
,
218
(
1996
).
K.
Aoki
,
H.
Yamawaki
,
M.
Sakashita
,
H.
Fujihisa
,
Phys. Rev. B
54
,
15
673
(
1996
).
P. Loubeyre et al., Nature, in press.
M.
Benoit
,
D.
Marx
,
M.
Parrinello
,
Nature
392
,
258
(
1998
).
C.
Lobban
,
J. L.
Finney
,
W. F.
Kuhs
,
Nature
391
,
268
(
1998
).
I. M. Chou et al. Science, in press.
9.
W. J. Nellis, A. C. Mitchell, N. C. Holmes, P. C. McCandless. High Pressure Research: Application to Earth and Planetary Sciences, Y. Syono, M. H. Manghnani, eds., Terra Scientific Publishing/AGU, Tokyo/Washington, DC (1992). p. 387.
W. J.
Nellis
,
A. C.
Mitchell
,
Bull. Am. Phys. Soc.
43
,
408
(
1998
).
10.
O.
Mishima
,
L. D.
Calvert
,
E.
Whalley
,
Nature
310
,
393
(
1984
),
and
O.
Mishima
,
L. D.
Calvert
,
E.
Whalley
,
314
,
76
(
1985
).
O.
Mishima
,
H. E.
Stanley
,
Nature
392
,
164
(
1998
).
For general reviews of high‐pressure transitions in liquids, see the following.
P. H.
Poole
,
T.
Grande
,
C. A.
Angell
,
P. F.
McMillan
,
Science
275
,
322
(
1997
).
V. V.
Brazhkin
,
S. V.
Popova
,
R. N.
Voloshin
,
High Pressure Res.
15
,
267
(
1997
).
11.
W. L.
Vos
et al.,
Nature
358
,
46
(
1992
).
P.
Loubeyre
,
M.
Jean‐Louis
,
R.
LeToullec
,
L.
Charon‐Gérard
,
Phys. Rev. Lett.
70
,
178
(
1993
).
J. A.
Schouten
,
J. Phys.: Cond. Matter
7
,
469
(
1995
).
12.
L.
Dubrovinsky
et al.,
Nature
388
,
362
(
1997
).
D. M.
Teter
,
R. J.
Hemley
,
G.
Kresse
,
J.
Hafher
,
Phys. Rev. Lett.
80
,
2145
(
1998
).
R. M.
Wentzcovitch
,
C.
da Silva
,
J. R.
Chelikowsky
,
N.
Binggeli
,
Phys. Rev. Lett.
80
,
2149
(
1998
).
13.
A. Y.
Liu
,
M. L.
Cohen
,
Science
245
,
841
(
1989
).
D. M.
Teter
,
R. J.
Hemley
,
Science
271
,
53
(
1996
).
H.
Hubert
et al.,
Nature
391
,
376
(
1998
).
14.
S. A.
Catledge
,
Y. K.
Vohra
,
S. T.
Weir
,
J.
Akella
,
J. Phys.: Cond. Matter
9
,
L67
(
1997
).
A. Israel, Y. K. Vohra, Mat. Res. Soc. Symp., in press.
15.
L. J.
Parker
,
T.
Atou
,
J. V.
Badding
,
Science
273
,
95
(
1996
).
T.
Atou
,
H.
Hasegawa
,
L. J.
Parker
,
J. V.
Badding
,
J. Am. Chem. Soc.
118
,
12
104
(
1996
).
16.
L.
Gao
et al.,
Phys. Rev. B
50
,
4260
(
1994
).
17.
H.
Luo
,
S.
Desgreniers
,
Y. K.
Vohra
,
A. L.
Ruoff
,
Phys. Rev. Lett.
67
,
2998
(
1991
).
18.
V. V.
Struzhkin
,
R. J.
Hemley
,
H. K.
Mao
,
Y.
Timofeev
,
Nature
390
,
382
(
1997
).
S.
Kometani
et al.,
J. Phys. Soc. Japan
66
,
2564
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.