The origin of cosmic rays has been a major mystery in astrophysics for nearly a century. However, any lingering doubt about whether the bulk of the cosmic rays (those with energies below about 1015eV) are Galactic or extragalactic has been removed in the 1990s in favor of a Galactic origin. The question has been settled by gamma‐ray observations made by the Energetic Gamma Ray Experiment Telescope on the Compton Gamma Ray Observatory. The EGRET observations showed that the cosmic‐ray energy density in a nearby galaxy—the Small Magellanic Cloud—is much lower than that found locally in our own Galaxy and is thus inconsistent with a uniform extragalactic density. This discovery, of course, does not preclude an extragalactic origin for the very highest energy cosmic rays, which are observed above about 1019eV. (See PHYSICS TODAY, January 1998, page 31). The power of about 1041ergs/s required to maintain the cosmic rays throughout the Galaxy is most likely supplied by supernovae (figure 1). With a Galactic supernova rate of roughly three per century, the required energy per supernova is about 1050ergs, which is about 10% of the kinetic energy of the expanding supernova ejecta. Shock acceleration in the supernova blast wave driven by the ejecta could impart such a proportion of the available kinetic energy to cosmic rays.

1.
S. P. Maran, ed., The Astronomy and Astrophysics Encyclopedia, Van Nostrand, New York (1992);
see cosmic‐ray reviews by J. P. Wefel, P. Meyer, R. E. Lingenfelter and J. R. Jokipii, supernova reviews by R. A. Fresen, K. Nomoto and S. E. Woosley, and a Wolf‐Rayet review by M. A. Azzopardi.
2.
For the EGRET observations of the Magellanic clouds, see
P.
Sreekumar
et al.,
Phys. Rev. Lett.
70
,
127
(
1993
).
For the EGRET data on Orion, see
S. W.
Digel
,
S. D.
Hunter
,
R.
Mukherjee
,
Astrophys. J.
441
,
270
(
1995
).
3.
For beryllium observations, see
P.
Molaro
,
P.
Bonifacio
,
F.
Castelli
,
L.
Pasquini
,
Astron. and Astrophys.
319
,
593
(
1997
).
For boron observations, see
D. K.
Duncan
et al.,
Astrophys. J.
488
,
338
(
1997
).
For 6Li observations, see
L. M.
Hobbs
,
J. A.
Thorburn
,
Astrophys. J.
491
,
772
(
1997
).
For the first suggestion that B and Be in the early Galaxy are produced mainly by accelerated C and O, see
D. K.
Duncan
,
D. L.
Lambert
,
M.
Lemke
,
Astrophys. J.
401
,
584
(
1992
).
4.
F. X.
Timmes
,
S. E.
Woosley
,
T. A.
Weaver
,
Astrophys. J. Suppl.
98
,
617
(
1995
).
5.
H.
Reeves
,
Rev. Mod. Phys.
66
,
193
(
1994
).
6.
S. E.
Woosley
,
T. A.
Weaver
,
Astrophys. J. Suppl.
101
,
181
(
1995
)
7.
R.
Ramaty
,
B.
Kozlovsky
,
R. E.
Lingenfelter
,
H.
Reeves
,
Astrophys. J.
488
,
730
(
1997
).
8.
For the meteorite data, see
M.
Chaussidon
,
F.
Robert
,
Nature
374
,
337
(
1995
),
For the interstellar data, see
S. R.
Federman
,
D. L.
Lambert
,
J. A.
Cardelli
,
Y.
Sheffer
,
Nature
381
,
764
(
1996
).
9.
H.
Bloemen
et al.,
Astron. and Astrophys.
281
,
5
(
1994
);
H.
Bloemen
,
Astrophys. J.
475
,
25
1997
).
10.
R.
Ramaty
,
B.
Kozlovsky
,
R. E.
Lingenfelter
,
Astrophys. J.
456
,
525
(
1996
).
R.
Ramaty
,
Astron. and Astrophys. Suppl.
120
,
C373
(
1996
).
B.
Kozlovsky
,
R.
Ramaty
,
R. E.
Lingenfelter
,
Astrophys. J.
484
,
286
(
1997
).
11.
E. M. G.
Parizot
,
M.
Casse
,
E.
Vangioni‐Flam
,
Astron. And Astrophys.
328
,
107
(
1997
).
12.
B. B.
Nath
,
P. L.
Biermann
,
Month. Not. Roy. Astron. Soc.
270
,
L33
(
1994
).
A. M.
Bykov
,
H.
Bloemen
,
Astron. and Astrophys.
283
,
1
(
1994
).
H. Bloemen, A. Bykov, in Proc. 4th Compton Symp. part 1, C. D. Dermer, M. S. Strickman, J. D. Kurfess, eds., AIP, New York (1998) p. 249.
13.
M.
Casse
,
R.
Lehoucq
,
E.
Vangioni‐Flam
,
Nature
373
,
318
(
1995
).
14.
M.
Maeder
,
G.
Meynet
,
Astron. and Astrophys.
287
,
803
(
1994
),
P.
Massey
,
C. C.
Lang
,
K.
DeGioia‐Eastwood
,
C. D.
Garmany
,
Astrophys. J.
438
,
188
(
1995
).
15.
W. R.
Webber
,
Space Set. Rev.
81
,
107
(
1997
).
16.
J.‐P.
Meyer
,
L. O’C.
Drury
,
D. C.
Ellison
,
Astrophys. J.
487
,
182
(
1997
).
D. C.
Ellison
,
L. O’C.
Drury
,
J.‐P.
Meyer
,
Astrophys. J.
487
,
197
(
1997
).
17.
For coronal and solar energetic particle abundances, see
D. V.
Reames
,
Adv. Space Res.
15
, no.
7
,
41
(
1995
).
For the extension of the solar energetic particle model to acceleration in stellar atmospheres, see M. M. Shapiro, in 25th International Cosmic Ray Conf. M. S. Potgieter, B. C. Raubenheimer, D. J. van der Walt, eds., Potchefstroom University for Christian Higher Education, Potchefstroom, South Africa (1997), vol. 4, p. 353.
18.
For a discussion of refractory carbon in SN1987A, see L. B. Lucy, I. J. Danziger, C. Gouiffes, P. Bouchet, in Structure and Dynamics of the Interstellar Medium, G. Tenorio‐Tagle, M. Moles, J. Melnick, eds.. Springer‐Verlag, Berlin (1989), p. 164,
For a discussion of freshly released grains, see C. J. Cesarsky, J.‐P. Bibnng, in Origin of Cosmic Rays, G. Setti, G. Spada, A. W. Wolfendale, eds., Reidel, Dordrecht, The Netherlands (1981), p. 361,
For a discussion of strontium and barium in SN1987A, see
P. A.
Mazzali
,
L. B.
Lucy
, and
K.
Butler
,
Astron. and Astrophys.
258
,
399
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.