Because high‐magnetic‐field experiments have proved to be valuable tools for illuminating the physics of phenomena ranging from the quantum Hall effect to high‐temperature superconductivity, magnet laboratories around the world are constantly striving to produce more intense magnetic fields, using both continuous‐ and pulsed‐field magnets. To date, magnetic fields above 100 tesla have been achieved only by self‐destructing (exploding or imploding) magnet technologies. These intense magnetic fields persist for only a few microseconds, and most of the destructive‐magnet technologies also destroy the sample. However, the recent development of structurally stronger composite conductors has made feasible the design of pulsed magnets capable of nondestructively delivering 10‐ms 100‐T (that is, megagauss) pulses. (See the box on page 41). During the past five years, researchers in both Europe and the US have proposed building such magnets, along with experiments to exploit this new experimental regime.

1.
J. A. A. J. Perenboom, ed., Research in High Magnetic Fields, Elsevier Science, Amsterdam (1995),
reprinted from
Physica B
211
(
1995
).
2.
E. Manousakis et al. Physical Phenomena at High Magnetic Fields, Addison‐Wesley, Reading, Mass. (1992).
Z. Fisk et al., Physical Phenomena at High Magnetic Fields II, World Scientific, Singapore (1996).
3.
MRS Bull.
18
(
8
), (
1993
).
4.
N. Miura, ed., Frontiers in High Magnetic Fields, Elsevier Science, Amsterdam (1994),
reprinted from
Physica B
201
(
1994
).
5.
N. W. Ashcroft, N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York (1976).
C. Kittel, Introduction to Solid State Physics, Wiley and Sons, New York (1986).
6.
P.
Coleman
,
Physics World
8
(
12
),
29
(
1995
).
P.
Anderson
,
Physics World
8
(
12
),
37
(
1995
).
P. W.
Anderson
,
Science
256
,
1526
(
1992
).
7.
D. Shoenberg, Quantum Oscillations in Solids, Cambridge U.P., Cambridge, UK (1984).
8.
N.
Harrison
et al.,
Phys. Rev. B
52
,
5584
(
1995
), and references therein.
9.
J. S.
Brooks
et al.,
Phys. Rev. B
53
,
14406
(
1996
).
10.
T. Chakraborty, P. Pietilainen, The Quantum Hall Effects. Fractional and Integral, Springer‐Verlag, Berlin (1995).
R. L. Willett, Adv. Phys., to be published.
11.
G.
Zwicknagl
,
Adv. Phys.
41
,
203
(
1992
).
12.
W.
Joss
et al.,
Phys. Rev. Lett.
59
,
1609
(
1987
).
E. G.
Haanappel
,
R.
Hedderich
,
W.
Joss
,
S.
Askenazy
,
Z.
Fisk
,
Physica B
177
,
181
(
1992
).
N.
Harrison
,
P.
Meeson
,
P.‐A.
Probst
,
M.
Springford
,
J. Phys.: Cond. Matter
5
,
7435
(
1993
),
and references therein.
H.
Aoki
,
S.
Uji
,
A. K.
Albessard
,
Y.
Onuki
,
Phys. Rev. Lett.
71
,
2110
(
1993
).
13.
G.
Aeppli
,
Z.
Fisk
,
Comments Cond. Matter Phys.
16
,
155
(
1992
).
G. S.
Boebinger
,
A.
Passner
,
P. C.
Canfield
,
Z.
Fisk
,
Physica B
211
,
227
(
1995
).
14.
D. M. Ginsberg, ed., Properties of High Temperature Superconductors III. World Scientific, Singapore (1991).
D. M. Ginsberg, ed., Properties of High Temperature Superconductors TV, World Scientific, Singapore (1994).
15.
A. P.
Mackenzie
et al.,
Phys. Rev. Lett.
71
,
1238
(
1993
).
M. S.
Osofsky
et al.,
Phys. Rev. Lett.
71
,
2315
(
1993
).
Y.
Ando
,
G. S.
Boebinger
,
A.
Passner
,
T.
Kimura
,
K.
Kishio
,
Phys. Rev. Lett.
75
,
4662
(
1995
).
16.
R.
Corcoran
et al.,
Physica B
206‐207
,
534
(
1995
),
and references therein.
C. M.
Fowler
et al.,
Phys. Rev. Lett.
68
,
534
(
1992
).
17.
Z.
Tesanovic
,
M.
Rasolt
,
L.
Xing
,
Phys. Rev. Lett.
63
,
2424
(
1993
).
M.
Rasolt
,
Z.
Tesanovic
,
Rev. Mod. Phys.
64
,
709
(
1992
).
A. G.
Lebed
,
JETP Lett.
44
,
114
(
1986
).
N.
Dupuis
,
G.
Montambaux
,
C. A. R. Sa de
Melo
,
Phys. Rev. Lett.
70
,
2613
(
1993
).
18.
J.
Bevk
,
Ann. Rev. Mater. Sci.
13
,
319
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.