Visually opaque media are ubiquitous in nature. While some materials are opaque because they strongly absorb visible light, others, such as loam, white paint, biological tissue and milk, are opaque because photons traveling within them are predominantly scattered rather than absorbed. A vanishingly small number of photons travel straight through such substances. Instead, light is transported through these materials in a process similar to heat diffusion (figure 1).

1.
G.
Maret
,
P. E.
Wolf
,
Z. Phys. B
65
,
409
(
1987
).
M. J.
Stephen
,
Phys. Rev. B
37
,
1
(
1988
).
D. J.
Pine
,
D. A.
Weitz
,
P. M.
Chaikin
,
E.
Herbolzheimer
,
Phys. Rev. Lett.
60
,
1134
(
1988
).
2.
See, for example, A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic, New York (1978).
S. Glasstone, M. C. Edlund, The Elements of Nuclear Reactor Theory, Van Nostrand, New York (1952) chs. 5, 14.
K. M. Case, P. F. Zweifel, Linear Transport Theory, Addison‐Wesley, Reading, Mass. (1967) ch. 8 and references therein.
3.
J. R.
Singer
,
F. A.
Grunbaum
,
P.
Kohn
,
J.
Zubelli
,
Science
248
,
990
(
1990
).
F. F.
Jobsis
,
Science
198
,
1264
(
1977
).
For many examples of continuous‐wave imaging with diffuse light, see work in the field of diaphanography:
M.
Kaneko
et al.,
Radiat. Medicine
6
,
61
(
1988
) and references therein.
4.
M. S.
Patterson
,
B.
Chance
,
B. C.
Wilson
,
Appl. Opt.
28
,
2331
(
1989
).
B.
Chance
et al.,
Proc. Natl. Acad. Sci. USA
85
,
4971
(
1988
).
D. T.
Delpy
,
M.
Cope
,
P.
van de Zee
,
S.
Arridge
,
S.
Wray
,
J.
Wyatt
,
Phys. Med. Biol.
33
,
1433
(
1988
).
S. L.
Jacques
,
Appl. Opt.
28
,
2223
(
1989
).
D. A.
Benaron
,
D. K.
Stevenson
,
Science
259
,
1463
(
1993
).
5.
J. Chang, Y. Wang, R. Aronson, H. L. Graber, R. L. Barbour, in Proc. Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., SPIE, Bellingham, Wash. (1992), p. 384.
6.
E. Gratton, W. Mantulin, M. J. van de Ven, J. Fishkin, M. Maris, B. Chance, in Proc. 3rd Int. Conf. Peace Through Mind/Brain Science, Y. Yamashita, ed., Hamamatsu Photonics, Hamamatsu, Japan (1990), p. 183.
J.
Fishkin
,
E.
Gratton
,
J. Opt. Soc. Am. A
10
,
127
(
1993
).
7.
J. M.
Schmitt
,
A.
Knuttel
,
J. R.
Knutson
,
J. Opt. Soc. Am. A
9
,
1832
(
1992
).
A.
Knuttel
,
J. M.
Schmitt
,
J. R.
Knutson
,
Appl. Opt.
32
,
381
(
1993
).
A.
Knuttel
,
J. M.
Schmitt
,
R.
Barnes
,
J. R.
Knutson
,
Rev. Sci. Instrum.
46
,
638
(
1993
).
8.
M. A.
O'Leary
,
D. A.
Boas
,
B.
Chance
,
A. G.
Yodh
,
Phys. Rev. Lett.
69
,
2658
(
1992
).
9.
D. A.
Boas
,
M. A.
O'Leary
,
B.
Chance
,
A. G.
Yodh
,
Phys. Rev. E
47
,
R2999
(
1993
).
M. A.
O'Leary
,
D. A.
Boas
,
B.
Chance
,
A. G.
Yodh
,
J. Lumin.
60–61
,
281
(
1994
).
10.
B. J.
Tromberg
,
L. O.
Svaasand
,
T. T.
Tsay
,
R. C.
Haskell
,
Appl. Opt.
32
,
607
(
1993
).
E. M.
Sevick
,
J.
Lakowicz
,
H.
Szmacinski
,
K.
Nowacyzk
,
M. L.
Johnson
,
J. Photochem. Photobiol. B
16
,
169
(
1992
).
11.
M.
Takada
,
T.
Tamura
,
M.
Tamura
,
Adv. Exp. Med. Biol.
215
,
301
(
1987
).
H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, in Proc. Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. Alfano, eds., SPIE, Bellingham, Wash. (1993) p. 372.
M. Kashke, H. Jess, G. Gaida, J.‐M. Kaltenbach, W. Wrobel, in Proc. Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Opt. Soc. Am., Washington, D.C. (1994) p. 88.
12.
H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, Oxford U.P., Oxford, England (1959).
13.
D. A.
Boas
,
M. A.
O'Leary
,
B.
Chance
,
A. G.
Yodh
,
Proc. Natl. Acad. Sci. USA
91
,
4887
(
1994
).
For similar calculations and measurements for small objects and continuous sources, see
P. N.
den Outer
,
Th. M.
Nieuwenhuizen
,
A.
Lagendijk
,
J. Opt. Soc. Am. A
10
,
1209
(
1993
).
14.
M. A.
O'Leary
,
D. A.
Boas
,
B.
Chance
,
A. G.
Yodh
,
Opt. Lett.
20
,
426
(
1995
).
15.
L.
Wang
,
P. P.
Ho
,
C.
Liu
,
G.
Zhang
,
R. R.
Alfano
,
Science
253
,
769
(
1991
).
16.
B.
Beauvoit
,
H.
Liu
,
K.
Kang
,
P. D.
Kaplan
,
M.
Miwa
,
B.
Chance
,
Cell Biophys.
23
,
91
(
1993
).
B. Beauvoit, S. M. Evans, T. Jenkins, E. Miller, B. Chance, to be published in Anal. Biochem.
17.
M. Kohl, M. Essenpries, D. Booker, M. Cope, in Proc. Conf Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., SPIE, Bellingham, Wash. (1995).
18.
S. P.
Gopinath
,
C. S.
Robertson
,
R. G.
Grossman
,
B.
Chance
,
J. Neurosurg.
79
,
43
(
1993
).
19.
C. D.
Kurth
,
J. M.
Steven
,
S. C.
Nicolson
,
Anesthesiology
82
,
74
(
1995
).
20.
D. T.
Delpy
,
S. R.
Arridge
,
M.
Cope
,
Adv. Exp. Med. Biol.
248
,
41
(
1989
).
E. M.
Sevick
,
B.
Chance
,
J.
Leigh
,
S.
Nioka
,
M.
Maris
,
Anal. Biochem.
195
,
330
(
1991
).
21.
B.
Chance
,
Z.
Zhuang
,
C.
Unah
,
C.
Alter
,
L.
Lipton
,
Proc. Natl. Acad. Sci. USA
90
,
3770
(
1993
).
22.
S. R. Arridge, in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, ed., SPIE, Bellingham, Wash. (1993), p. 31.
S. R. Arridge, P. van de Zee, M. Cope, D. T. Delpy, in Proc. Time‐Resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., SPIE, Bellingham, Wash. (1991), p. 204.
M. A. O'Leary, D. A. Boas, B. Chance, A. G. Yodh, in Proc. Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Opt. Soc. Am., Washington, D.C. (1994), p. 106.
J. C.
Schotland
,
J. C.
Haselgrove
,
J. S.
Leigh
,
Appl. Opt.
32
,
448
(
1993
).
23.
A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE, New York (1988).
24.
S. Smith, W. J. Levy, S. Carter, M. Haida, B. Chance, in Proc. Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. Alfano, eds., SPIE, Bellingham, Wash. (1993), p. 511.
This content is only available via PDF.
You do not currently have access to this content.