Investigations of rare earth, Aactinide, organic and oxide compounds have yielded several new classes of exotic superconductors. These include magnetically ordered superconductors, A15 superconductors, buckyball superconductors, heavy‐electron superconductors, organic superconductors and high‐Tc oxide superconductors. These materials have properties significantly different from those of conventional superconductors such as Al and Zn, which are described well by the Bardeen‐Cooper‐Schrieffer model of superconductivity. We carefully distinguish between the BCS model and the more general BCS theory. In the BCS theory superconductivity arises, loosely speaking, from electron pairs that behave essentially as bosons and undergo macroscopic condensation to the lowest energy state at the critical temperature Tc The BCS model, presented in 1957, further specifies that the pairing is mediated by exchange of quantized lattice vibrations (phonons) between the electrons, yielding pairs with zero spin S (spin singlet) and zero angular momentum L (s wave). This model is but one example of the BCS pairing theory; another describes the superfluid state of 3He, where the fermionic 3He atoms form p‐wave (L = 1) spin‐triplet (S = 1) pairs held together by the exchange of magnetic excitations of the surrounding atomic sea.

1.
Reviews of heavy‐fermion materials include
P. A.
Lee
,
T. M.
Rice
,
L. J.
Sham
,
J.
Serene
,
J. W.
Wilkins
,
Commun. Cond. Matt. Phys.
12
,
99
(
1985
);
L.
Gorkov
,
Sov. Sci. Rev.
9A
,
1
(
1987
);
N. Grewe, F. Steglich, in Handbook of the Physics and Chemistry of the Rare Earths, vol. 14, K. A. Gschneidner Jr., L. L. Eyring, eds., Elsevier, Amsterdam (1991), p. 343.
2.
For a review see various articles in D. M. Ginsberg, ed., Physical Properties of High Temperature Superconductors, vols. I–III, World Scientific, Singapore (1989–92).
3.
F.‐C.
Zhang
,
T. M.
Rice
,
Phys. Rev. B
37
,
3759
(
1988
).
4.
C. L.
Seaman
et al.,
Phys. Rev. Lett.
67
,
2882
(
1991
).
H.
Amitsuka
et al.,
Physica B
186‐188
,
337
(
1993
).
5.
W. N.
Hardy
,
D. A.
Bonn
,
D. C.
Morgan
,
R.
Liang
,
K.
Zhang
,
Phys. Rev. Lett.
70
,
3999
(
1993
).
6.
R.
Heffner
et al.,
Phys. Rev. Lett.
65
,
2816
(
1990
).
7.
S. E.
Lambert
et al.,
Phys. Rev. Lett.
57
,
1619
(
1986
).
8.
J.
Sauls
reviews the understanding of UPt3 in terms of twocomponent pair wavefunctions in
Adv. Phys.
43
,
113
(
1994
).
9.
A. G.
Sun
,
L. M.
Paulius
,
D. A.
Gajewski
,
M. B.
Maple
,
R. C.
Dynes
,
Phys. Rev. Lett.
72
,
2267
(
1994
).
10.
P.
Monthoux
,
D.
Pines
,
Phys. Rev. Lett.
69
,
961
(
1992
).
11.
C. H.
Pao
,
N. E.
Bickers
,
Phys. Rev. Lett.
72
,
1870
(
1994
).
P.
Monthoux
,
D. J.
Scalapino
,
Phys. Rev. Lett.
72
,
1874
(
1994
).
12.
J.
Hirsch
,
Physica B
199–200
,
366
(
1994
).
13.
M. R.
Norman
,
Phys. Rev. Lett.
72
,
2077
(
1994
).
14.
R.
Laughlin
,
Science
242
,
525
(
1988
).
G.
Canright
,
S. M.
Girvin
,
Science
247
,
1197
(
1990
).
15.
D. S.
Rokhsar
,
Phys. Rev. Lett.
70
,
961
(
1993
).
16.
V. L.
Berezinskii
,
JETP Lett.
20
,
287
(
1974
).
A. V.
Balatsky
,
E.
Abrahams
,
Phys. Rev. B
45
,
13125
(
1992
).
A. V. Balatsky’, E. Abrahams, J. R. Schrieffer, D. J. Scalapino, to be published in Physica B.
17.
V. J.
Emery
,
S. A.
Kivelson
,
Phys. Rev. B
46
,
10812
(
1992
);
V. J.
Emery
,
S. A.
Kivelson
,
Phys. Rev. Lett.
72
,
1918
(
1994
).
18.
P.
Coleman
,
E.
Miranda
,
A.
Tsvelik
,
Phys. Rev. Lett.
70
,
2960
(
1993
).
R. Heid, “On the Thermodynamic Stability of Odd‐in‐Frequency Superconductivity,” preprint, Ohio State U., 1994.
19.
P.
Noziéres
,
A.
Blandin
,
J. Phys. (Paris)
41
,
193
(
1980
).
A. W. W.
Ludwig
,
I.
Affleck
,
Phys. Rev. Lett.
57
,
3160
(
1991
).
20.
D. L.
Cox
,
Phys. Rev. Lett.
59
,
1240
(
1987
);
D. L.
Cox
,
Physica B
186–188
,
312
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.