Understanding turbulent flows is a “grand challenge” comparable to other prominent scientific problems such as the large‐scale structure of the universe and the nature of subatomic particles. In contrast to many of the other grand challenges, progress on the basic theory of turbulence translates nearly immediately into a wide range of engineering applications and technological advances that affect many aspects of everyday life.
REFERENCES
1.
“Grand Challenges 1993: High Performance Computing and Communications,” report by the Committee on Physical, Mathematical and Engineering Sciences, Federal Coordinating Council for Science, Engineering and Technology, Washington, D.C. (1992).
2.
3.
4.
M. Y. Hussaini, R. G. Voigt, eds., Instability and Transition, vols. I and II, Springer‐Verlag, New York (1990).
5.
L.
Kaiktsis
, G. E.
Karniadakis
, S. A.
Orszag
, J. Fluid Mech.
231
, 501
(1991
).A. G. Tomboulides, S. A. Orszag, G. E. Karniadakis, preprint AIAA‐93‐0546, Am. Inst. of Aeronautics and Astronautics, New York (January 1993).
6.
B. Galperin, S. A. Orszag, eds., Large Eddy Simulations of Complex Engineering and Geophysical Flows, Cambridge U.P., New York (1993).
7.
S. A. Orszag, V. Yakhot, W. S. Flannery, F. Boysan, D. Choudhury, J. Maruzewski, B. Patel, in Near‐Wall Turbulent Flows, R. M. So, C. G. Speziale, B. E. Launder, eds., Elsevier, New York (1993).
8.
R. K. Agarwal, J. C. Lewis, in Symp. on High Performance Computing for Flight Vehicles, Washington, D.C., 7–9 December 1992, in press. M. Y. Hussaini, in 11th Int. Conf. on Numerical Methods in Fluid Dynamics, D. L. Dwoyer, M. Y. Hussaini, R. G. Voigt, eds., Springer‐Verlag, New York (1989), p. 3.
9.
10.
F. T. Leighton, Introduction to Parallel Algorithms and Architectures, Morgan and Kaufmann, San Mateo, Calif. (1992).
See also IEEE Spectrum, September 1992.
11.
S. L. Johnsson, in Topics in Atmospheric and Oceanic Sciences, Springer‐Verlag, New York (1990), p. 231.
12.
G. E. Amdahl, in Proc. AFIPS Spring Joint Computer Conf., Atlantic City, N.J., 18–20 April 1967, Thompson, Washington, D.C. (1967), p. 483.
13.
14.
A. Wray, R. Rogallo, “Simulation of Turbulence on the Intel Delta Gamma,” NASA Technical Memorandum, April 1992.
15.
S.
Chen
, G. D.
Doolen
, R. H.
Kraichnan
, Z.‐S.
She
, Phys. Fluids A
5
, 458
(1993
).Z.‐S. She, S. Chen, G. D. Doolen, R. H. Kraichnan, S. A. Orszag, submitted to Phys. Rev. Lett. (1993).
16.
G. E. Karniadakis, S. A. Orszag, E. M. Ronquist, A. T. Patera, in Incompressible Fluid Dynamics, M. D. Gunzburger, R. A. Nicolaides, eds., Cambridge U.P., New York (1993), in press.
G. E. Karniadakis, S. A. Orszag, in Algorithmic Trends for Computational Fluid Dynamics, M. Y. Hussaini, A. Kumar, M. Salas, eds., Springer‐Verlag, New York (1993), in press.
17.
18.
19.
G. Doolen, ed., Lattice Gas Methods for Partial Differential Equations, Addison‐Wesley, Redwood City, Calif. (1989).
Y. H.
Qian
, D.
d'Humieres
, P.
Lallemand
, Europhys. Lett.
17
, 479
(1992
).20.
E. S. Oran, J. P. Boris, Numerical Simulation of Reactive Flow, Elsevier, New York (1987).
21.
D. H.
Porter
, A.
Pouquet
, P. R.
Woodward
, Theor. Comput. Fluid Dynamics
4
, 13
(1992
).22.
D.
Chu
, R. D.
Henderson
, G. E.
Karniadakis
, Theor. Comput. Fluid Dynamics
3
, 219
(1992
).R. D. Henderson, PhD thesis, Princeton U., Princeton, N.J. (1993).
23.
G. Erlebacher, private communication (1992).
24.
E. S.
Oran
, J. P.
Boris
, C. R.
Devore
, J. Fluid Dynamics Res.
10
, 251
(1992
).
This content is only available via PDF.
© 1993 American Institute of Physics.
1993
American Institute of Physics
You do not currently have access to this content.