For more than 50 years the symbiotic relationship among semiconductor physics, technology and device engineering has exemplified cooperative activity that spans the continuum of the scientific enterprise, from the purest physics to the marketplace. In physics this activity has led to the observation of unexpectedly rich and intricate phenomena; in technology it has resulted in expanded techniques and invention with broad applications and key contributions to the electronics, communications and computer revolutions. Semiconductors have changed our world profoundly and probably beneficially, touching the lives of almost everyone in it—and not just by fueling advances in data handling and communications but also by making possible such consumer staples as the transistor radio and the compact disk player. Some might choose to designate the last half‐century as the nuclear age or the jet age; others might think of it as the age of semiconductor electronics.

1.
Cited in L. Hoddeson, G. Baym, M. Eckert, in Out of the Crystal Maze, L. Hoddeson, E. Braun, J. Teichmann, S. Weart, eds., Oxford U.P., New York (1992), p. 121.
2.
L.
Hoddeson
,
G.
Baym
,
M.
Eckert
,
Rev. Mod. Phys.
59
,
287
(
1987
).
3.
For a more nearly complete review of the history of this period, see E. Braun, in Out of the Crystal Maze, L. Hoddeson, E. Braun, J. Teichmann, S. Weart, eds., Oxford U.P., New York (1992), p. 443.
4.
J.
Bardeen
,
W. H.
Brattain
,
Phys. Rev.
74
,
230
(
1948
).
For one view of the history of the transistor see N. Holonyak Jr, PHYSICS TODAY, April 1992, p. 36.
5.
W.
Shockley
,
Bell Syst. Tech. J.
28
,
435
(
1949
).
For another view of the history of the transistor, see
W.
Shockley
,
IEEE Trans. Electron Devices
7
,
597
(
1976
).
6.
G. K.
Teal
,
J. B.
Little
,
Phys. Rev.
78
,
63
(
1967
).
7.
F.
Herman
,
Phys. Rev.
88
,
1210
(
1952
).
F.
Herman
,
J.
Callaway
,
Phys. Rev.
89
,
518
(
1952
).
8.
G. N.
Pearson
,
G. H.
Suhl
,
Phys. Rev.
83
,
786
(
1951
).
B.
Abeles
,
S.
Meiboom
,
Phys. Rev.
95
,
31
(
1954
).
9.
G.
Dresselhaus
,
A. F.
Kip
,
C.
Kittel
,
Phys. Rev.
92
,
827
(
1953
).
B.
Lax
,
J.
Ziegler
,
R. N.
Dexter
,
E. S.
Rosenblum
,
Phys. Rev.
93
,
368
(
1954
).
10.
L.
Esaki
,
Phys. Rev.
109
,
603
(
1958
).
11.
R. N.
Hall
,
G. E.
Fenner
,
J. D.
Kingsley
,
T. J.
Salty
,
R. O.
Carlson
,
Phys. Rev. Lett.
9
,
366
(
1962
).
M. I.
Nathan
,
W. P.
Dumke
,
G.
Burns
,
F. H.
Dill
Jr
,
G.
Lasher
,
Appl. Phys. Lett.
1
,
62
(
1962
).
T. M.
Quist
,
R. H.
Rediker
,
R. J.
Keyes
,
W. E.
Krag
,
B.
Lax
,
A. L.
McWhorter
,
H. J.
Zeiger
,
Appl. Phys. Lett.
1
,
91
(
1962
).
For a brief history of the semiconductor injection laser, see
R. N.
Hall
,
IEEE Trans. Electron Devices
7
,
700
(
1976
).
12.
For a brief review, see
D.
Kahng
,
IEEE Trans. Electron Devices
7
,
655
(
1976
), and refs. therein.
13.
A. B.
Fowler
,
F. F.
Fang
,
W. E.
Howard
,
P. J.
Stiles
,
Phys. Rev. Lett.
16
,
1901
(
1966
).
14.
K. von
Klitzing
,
G.
Dorda
,
M.
Pepper
,
Phys. Rev. Lett.
45
,
494
(
1980
).
15.
G.
Lewicki
,
J.
Maserjian
,
J. Appl. Phys.
46
,
3032
(
1975
).
16.
R.
Dingle
,
H. L.
Störmer
,
A. C.
Gossard
,
W.
Wiegmann
,
Appl. Phys. Lett.
33
,
655
(
1978
).
17.
L.
Esaki
,
R.
Tsu
,
IBM J. Res. Dev.
14
,
61
(
1970
).
18.
L. L.
Chang
,
L.
Esaki
,
R.
Tsu
,
Appl. Phys. Lett.
24
,
593
(
1974
).
19.
D. C.
Tsui
,
H. L.
Störmer
,
A. C.
Gossard
,
Phys. Rev. Lett.
48
,
1559
(
1982
).
20.
B.
Van Wees
,
H.
van Houten
,
C. W. J.
Beenakker
,
J. G.
Williamson
,
L. T.
Kouwenhoven
,
D.
van der Marel
,
C. T.
Foxon
,
Phys. Rev. Lett.
60
,
848
(
1988
).
D. A.
Wharam
,
T. J.
Thornton
,
R.
Newbury
,
M.
Pepper
,
H.
Ahmed
,
J. E. F.
Frost
,
D. G.
Hasko
,
D. C.
Peacock
,
D. A.
Ritchie
,
G. A. C.
Jones
,
J. Phys. C
21
,
L209
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.