Many advanced composites can best be described hierarchically. In particular, the biological composites that occur in organisms are generally seen to be organized on discrete scale levels ranging from the molecular to the macroscopic. At each level the components are held together by specific interactions and organized in a way that is optimized for the ultimate function and performance of the overall system. Biological composites typically consist of fibers made from long macromolecules, organized into different structures. One can learn much from biological composites by considering the relationship between their structures and their properties. Whether natural or synthetic, for a composite system to function efficiently its components must be assembled into a specific architecture that gives the required spectrum of properties.

1.
S. W. Tsai, H. T. Hahn, Introduction to Composite Materials, Technomic Publishing, Lancaster, Pa. (1980).
2.
D. Hull, An Introduction to Composite Materials, Cambridge U.P., New York (1981).
3.
A. Kelly, N. H. Macmillan, Strong Solids, 3rd ed., Clarendon P., Oxford (1986).
4.
K. H. G. Ashbee, Fundamental Principles of Fiber‐Reinforced Composites, Technomic Publishing, Lancaster, Pa. (1989).
5.
E. Baer, J. J. Cassidy, A. Hiltner, in Viscoelasticity of Biomaterials, Am. Chem. Soc. Symp. Ser. 489, W. Glasser, H. Hatakayama, eds., Am. Chem. Soc., Washington, D.C. (1992), p. 2.
6.
E.
Baer
,
A.
Hiltner
,
H. D.
Keith
,
Science
235
,
1015
(
1987
).
7.
L.
Addadi
,
S.
Weiner
,
Proc. Natl. Acad. Sci. USA
82
,
4110
(
1985
);
L.
Addadi
,
S.
Weiner
,
Proc. Natl. Acad. Sci. USA
84
,
2732
(
1987
).
8.
S. A. Wainwright, W. D. Boggs, J. D. Currey, J. M. Gosline, Mechanical Design in Organisms, Princeton U.P., Princeton, N.J. (1982), p. 81.
9.
J. Kastelic, E. Baer, in Mechanical Properties of Biological Materials, Soc. Exp. Biol., 34th Symp., Leeds U., Leeds, England (1980), p. 397.
10.
J. D. Currey, The Mechanical Adaptations of Bones, Princeton U.P., Princeton, N.J. (1984).
11.
J. J.
Cassidy
,
A.
Hiltner
,
E.
Baer
,
J. Connective Tissue Res.
23
,
75
(
1989
).
12.
J. Vincent, Structural Biocomposites, rev. ed., Princeton U.P., Princeton, N.J. (1990).
13.
M. Sarikaya, I. A. Aksay, in Cellular Synthesis and Assembly of Biopolymers, S. Case, ed., Springer‐Verlag, New York (1992), p. 1.
M. Sarikaya et al., in Materials Synthesis Utilizing Biological Processes, MRS Symp. Proc. 174, P. C. Rieke, P. D. Calvert, M. Alper, eds., Mater. Res. Soc., Pittsburgh (1990), p. 109.
14.
W. Glasser, H. Hatakayama, eds., Viscoelasticity of Biomaterials, Am. Chem. Soc. Symp. Ser. 489, Am. Chem. Soc., Washington, DC. (1992).
15.
J. W.
Orberg
,
E.
Baer
,
A.
Hiltner
,
J. Connective Tissue Res.
11
,
285
(
1983
).
16.
L. A. McNicol, E. Strahlman, eds., Corneal Biophysics Workshop I on Corneal Biomechanics and Wound Healing, Natl. Eye Inst., Natl. Inst. Health, Bethesda, Md. (1989).
17.
S. M. Lee, ed., International Encyclopedia of Composites, VCH Publishers, New York (1990).
18.
H. T.
Hahn
,
J. Astronaut. Sci.
32
,
253
(
1984
).
19.
P. M.
Hergenrother
,
M. E.
Rogalski
,
Am. Chem. Soc. Polymer Preprints
33
(
1
),
354
(
1992
).
20.
Z. Sun, R. J. Morgan, D. N. Lewis, in Advanced Composite Materials: New Developments and Applications Conference Proceedings, Am. Soc. Metals Int., Materials Park, Ohio (1991), p. 555.
21.
R. J. Morgan, in International Encyclopedia of Composites, vol. 1, S. M. Lee, ed., VCH Publishers, New York (1990), p. 15.
This content is only available via PDF.
You do not currently have access to this content.