Thermodynamics arose in the 19th century out of the attempt to understand the performance limits of steam engines in a way that would anticipate all further inventions. Claude Shannon, after World War II, analyzed the limits of the communications channel. It is no surprise, then, that shortly after the emergence of modern digital computing, similar questions appeared in that field. It was not hard to associate a logic gate with a degree of freedom, then to associate kT with that, and presume that this energy has to be dissipated at every step. Similarly, it seemed obvious to many that the uncertainty principle, ΔEΔt∼ℏ, could be used to calculate a required minimal energy involvement, and therefore energy loss, for very short Δt.

1.
C. E.
Shannon
,
Bell Syst. Tech. J.
27
,
379
(
1948
);
ibid, p. 623.
2.
T. Toffoli, N. Margolus, Cellular Automata Machines, MIT P., Cambridge, Mass. (1987).
3.
K.
Zuse
,
Int. J. Theor. Phys.
21
,
589
(
1982
);
Rechnender Raum, Friedrich Vieweg und Sohn, Braunschweig (1969).
4.
R. Wright, Three Scientists and Their Gods, Times Books, New York (1988).
5.
See The Economist, 22 April 1989, p. 81.
6.
C. H.
Bennett
,
IBM J. Res. Dev.
17
,
525
(
1973
).
7.
E.
Fredkin
,
T.
Toffoli
,
Int. J. Theor. Phys.
21
,
219
(
1982
).
8.
C. H.
Bennett
,
Int. J. Theor. Phys.
21
,
905
(
1982
).
9.
J. von Neumann, US Patent 2 815 488, filed 28 April 1954.
E.
Goto
,
J. Electr. Commun. Eng., Japan
,
38
,
770
(
1955
).
10.
K. K.
Likharev
,
Int. J. Theor. Phys.
21
,
311
(
1982
).
K. K.
Likharev
,
S. V.
Rylov
,
V. K.
Semenov
,
IEEE Trans. Magn.
21
,
947
(
1985
).
11.
C. H.
Bennett
,
IBM J. Res. Dev.
32
,
16
(
1988
).
12.
R. Landauer, in Selected Topics in Signal Processing, S. Haykin, ed., Prentice‐Hall, Englewood Cliffs, N.J. (1989), p. 18. (Printed version has some figures oriented incorrectly).
13.
E. Biedermann, PHYSICS TODAY November 1990, p. 122.
14.
E. Goto, N. Yoshida, K. F. Loe, W. Hioe, in Proc. 3rd Int. Symp. Foundations of Quantum Mechanics, Tokyo 1989, S. Kobayashi, H. Ezawa, Y. Murayama, S. Nomura, eds., Phys. Soc. Japan, Tokyo (1990) p. 412.
15.
L.
Szilard
,
Z. Phys.
53
,
840
(
1929
);
English translation in J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement, Princeton U.P., Princeton 1983, p. 539.
16.
L. Brillouin in Science and Information Theory, Academic Press, New York (1956), p. 162.
D. Gabor, in Progress in Optics, vol. I, E. Wolf, ed. North‐Holland, Amsterdam (1961) p. 109.
17.
C. H. Bennett, Sci. Am., November, 1987, p. 108.
18.
O. Penrose, Foundations of Statistical Mechanics, Pergamon, Oxford (1970).
19.
W. H.
Zurek
,
Nature
341
,
119
(
1989
).
See also
C. M.
Caves
,
W. G.
Unruh
,
W. H.
Zurek
,
Phys. Rev. Lett.
65
,
1387
(
1990
).
20.
H. S. Leff and A. F. Rex, Maxwell's Demon: Entropy, Information, Computing, Princeton U.P., Princeton (1990).
21.
P.
Benioff
,
J. Stat. Phys.
22
,
563
(
1980
);
P.
Benioff
,
J. Stat. Phys.
29
,
515
(
1982
);
P.
Benioff
,
Phys. Rev. Lett.
48
,
1581
(
1982
).
22.
D.
Deutsch
,
Proc. R. Soc. London, Ser. A
425
,
73
(
1989
).
P. Benioff, in New Techniques and Ideas in Quantum Measurement Theory, Ann. N. Y. Acad. Sci., vol. 480, D. M. Greenberger, ed., (1986) p. 475;
N. Margolus, ibid., p. 487.
A.
Peres
,
Phys. Rev. A
32
,
3266
(
1985
);
W. H.
Zurek
,
Phys. Rev. Lett.
53
,
391
(
1984
).
23.
R.
Feynman
,
Opt. News
11
,
11
(
1985
);
reprinted in
R.
Feynman
,
Found. Phys.
16
,
507
(
1986
).
24.
J. A. Wheeler in Proc. 3rd Int. Symp. Foundations of Quantum Mechanics, Tokyo 1989, S. Kobayashi, H. Ezawa, Y. Murayama, S. Nomura, eds., Phys. Soc. Japan, Tokyo, (1990), p. 354;
IBM J. Res. Dev.
32
,
4
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.