A deep, quantitative understanding of the behavior of electronic devices is necessary to ensure that the circuits made by integrating those devices will have the desired characteristics. Such understanding of the device behavior has become all the more important as the devices have become smaller and many more of them are packed in smaller chips at ever higher densities. Supercomputers have been increasingly used to simulate small devices in recent years. There are several reasons for this development. First, boundary conditions become important as the device size decreases, and this makes the task of simulating the devices more complex. Second, several characteristic quantities that determine the behavior of a device, such as carrier concentration and velocity, do not vary gradually. Third and most important, boundary conditions generally lead to the quantization of physical quantities, and many novel quantization effects become significant and observable in nanometer structures.

1.
For a broad overview, see K. Hess, Advanced Theory of Semiconductor Devices, Prentice Hall, Englewood Cliffs, NJ (1988);
S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer‐Verlag, New York (1984);
D. K. Ferry, J. R. Barker, C. Jacoboni, eds., Physics of Nonlinear Transport in Semiconductors, Plenum, New York (1980).
2.
See reviews in F. Capasso, G. Margaritondo, eds., Heterojunction Band Discontinuities: Physics and Device Applications, North‐Holland, Amsterdam (1987);
H. L. Grubin, K. Hess, G. J. Iafrate, D. K. Ferry, eds., The Physics of Submicron Structures, Plenum, New York (1982).
3.
H.
Shichijo
,
K.
Hess
,
Phys. Rev. B
23
,
4197
(
1981
).
4.
M. V.
Fischetti
,
S. E.
Laux
,
Phys. Rev. B
38
,
9721
(
1988
).
5.
C. V.
Shank
,
R. L.
Fork
,
R. F.
Leheny
,
J.
Shah
,
Phys. Rev. Lett.
42
,
112
(
1979
).
C. L.
Tang
,
D. J.
Erskine
,
Phys. Rev. Lett.
51
,
840
(
1983
).
J. A.
Kash
,
J. C.
Tsang
,
J. M.
Hvam
,
Phys. Rev. Lett.
54
,
2151
(
1985
).
W. Z.
Lin
,
J. G.
Fujimoto
,
E. P.
Ippen
,
R. A.
Logan
,
Appl. Phys. Lett.
50
,
124
(
1987
).
6.
C. J.
Stanton
,
D. W.
Bailey
,
K.
Hess
,
IEEE J. Quantum Electron.
24
,
1614
(
1988
).
7.
M.
Heiblum
,
M. I.
Nathan
,
D. C.
Thomas
,
C. M.
Knoedler
,
Phys. Rev. Lett.
55
,
2200
(
1985
).
For a review, see
K.
Hess
,
G. J.
Iafrate
,
Proc IEEE
76
,
519
(
1988
).
8.
F.
Capasso
,
Science
235
,
172
(
1987
).
9.
R.
Dingle
,
H. L.
Störmer
,
A. C.
Gossard
,
W.
Wiegman
,
Appl. Phys. Lett.
33
,
665
(
1978
).
10.
T.
Mimura
,
S.
Hiyamizu
,
K.
Joshin
,
K.
Hikosaka
,
Jpn. J. Appl. Phys.
20
,
L317
(
1989
).
11.
J. L. Larson, I. C. Kizilyalli, K. Hess, A. Sameh, D. J. Widiger, in “Large Scale Computational Device Modeling,” K. Hess, ed., report of the Coordinated Science Laboratory, University of Illinois (1986).
12.
These effects have been experimentally demonstrated by the Illinois group:
M.
Keever
,
K.
Hess
,
M.
Ludowise
,
IEEE Electron Device Lett.
3
,
297
(
1982
).
M.
Keever
,
H.
Shichijo
,
K.
Hess
,
S.
Banerjee
,
L.
Witkowski
,
H.
Morkoc
,
B. G.
Streetman
,
Appl. Phys. Lett.
38
,
36
(
1981
).
The effect of negative differential resistance due to electron transfer in real space has been independently predicted three times: For multiple heterolayers, by
Z. S.
Gribnikov
,
Fiz. Tekh. Poluprovodn.
6
,
7
,
1380
(
1972
)
[
Z. S.
Gribnikov
,
Sov Phys‐Semicond
6
,
1204
(
1973
)];
for various heterolayer geometries, by
K.
Hess
,
H.
Morkoc
,
H.
Shichijo
,
B. G.
Streetman
,
Appl. Phys. Lett.
35
,
469
(
1979
);
for homojunctions (ion‐implanted silicon) by
F.
Pacha
,
F.
Paschke
,
Electron. Commun.
32
,
235
(
1978
).
13.
A.
Kastalsky
,
S.
Luryi
,
IEEE Electron Device Lett.
4
,
334
, (
1983
).
S.
Luryi
,
A.
Kastalsky
,
A. C.
Gossard
,
R. H.
Hendel
,
IEEE Trans. Electron Devices
31
,
832
(
1984
).
14.
F.
Sols
,
M.
Macucci
,
U.
Ravaioli
,
K.
Hess
,
Appl. Phys. Lett.
54
,
4
,
350
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.