The electrical conductivity of an ordinary metal such as gold is usually thought to be well understood. The electrons form a Fermi sea made up of plane waves modulated by the periodic crystal lattice. Because electrons obey Fermi statistics, only a narrow band of them, with an energy within kBT of the Fermi energy, contributes to the conductivity. At room temperature these electrons are scattered by lattice vibrations, resulting in a loss of momentum and a nonzero resistivity ρ(T). At low temperatures electron‐electron scattering is the dominant scattering mechanism. In the limiting case of zero temperature there is a residual resistivity ρ0 caused by the scattering of the electrons at the Fermi energy by lattice imperfections such as impurities and vacancies. The static defects that disrupt the translational symmetry of the crystalline lattice are the source of the disorder considered in this article.

1.
For a review of the interaction effects in disordered systems, see B. L. Al'tshuler, A. G. Aronov, in Electron‐Electron Inter action in Disordered Systems, M. Pollak, A. L. Efros, eds., North Holland, Amsterdam, (1985).
2.
For a review of the metal‐insulator transition and literature on weak localization, see
P. A.
Lee
,
T. B.
Ramakrishnan
,
Rev. Mod. Phys.
57
,
287
(
1985
).
3.
P. W.
Anderson
,
Phys. Rev.
109
,
1492
(
1958
).
4.
R.
Landauer
,
IBM J. Res. Dev.
1
,
223
(
1957
).
5.
M.
Büttiker
,
Phys. Rev. Lett.
57
,
1761
(
1986
).
M.
Büttiker
,
IBM J. Res. Dev.
32
,
317
(
1988
).
6.
J. T.
Edwards
,
D. J.
Thouless
,
J. Phys. C
5
,
807
(
1972
).
D. J.
Thouless
,
Phys. Rep.
13
,
93
(
1974
).
7.
D. J.
Thouless
,
Phys. Rev. Lett.
39
,
1167
(
1977
).
8.
G. J.
Dolan
,
D. D.
Osheroff
,
Phys. Rev. Lett.
43
,
721
(
1979
).
9.
F.
Wegner
,
Z. Phys. B
25
,
327
(
1976
).
10.
E.
Abrahams
,
P. W.
Anderson
,
D. C.
Licciardello
,
T. V.
Ramakrishnan
,
Phys. Rev. Lett.
42
,
673
(
1979
).
11.
K. M.
Watson
,
J. Math. Phys.
10
,
688
(
1969
).
D. A.
de Wolf
,
IEEE Trans. Antennas Propag.
19
,
254
(
1971
).
E. L.
Ivchenko
,
G. E.
Pikus
,
B. S.
Razbirin
,
A. I.
Starukhin
,
Zh. Eksp. Teor. Fiz.
72
,
2230
(
1977
)
[
E. L.
Ivchenko
,
G. E.
Pikus
,
B. S.
Razbirin
,
A. I.
Starukhin
,
Sov. Phys. JETP
45
,
1172
(
1977
)].
A. I.
Starukhin
,
Sov. Phys. JETP
46
,
590
(
1977
).
Y.
Kuga
,
A.
Ishimaru
,
J. Opt. Soc. Am. A
8
,
831
(
1984
).
M. P.
Van Albada
,
A.
Langendijk
,
Phys. Rev. Lett.
55
,
2692
(
1985
).
P.‐E.
Wolf
,
G.
Maret
,
Phys. Rev. Lett.
55
,
2696
(
1985
).
12.
For a review, see
G.
Bergmann
,
Phys. Rep.
101
,
1
(
1984
).
13.
B. L.
Al'tshuler
,
A. G.
Aronov
,
B. Z.
Spivak
,
Pis'ma Zh. Eksp. Teor. Fiz.
33
,
101
(
1981
)
[
B. L.
Al'tshuler
,
A. G.
Aronov
,
B. Z.
Spivak
,
JETP Lett.
33
,
94
(
1981
)].
14.
D. Yu.
Sharvin
,
Yu. V.
Sharvin
,
Pis'ma Zh. Eksp. Teor. Fiz.
34
,
285
(
1981
)
[
D. Yu.
Sharvin
,
Yu. V.
Sharvin
,
JETP Lett.
34
,
272
(
1981
)].
15.
W. L.
McMillan
,
J.
Mochel
,
Phys. Rev. Lett.
46
,
556
(
1981
).
16.
A. M.
Finkelshtein
,
Zh. Eksp. Teor. Fiz.
84
,
168
(
1983
)
[
A. M.
Finkelshtein
,
Sov. Phys. JETP
57
,
97
(
1983
)].
17.
C.
Castellani
,
G.
Kotliar
,
P. A.
Lee
,
Phys. Rev. Lett.
59
,
323
(
1987
).
18.
For recent references see
M. A.
Paalanen
,
J. E.
Graebner
,
R. N.
Bhatt
,
S.
Sachdev
,
Phys. Rev. Lett.
61
,
597
(
1988
).
19.
Y. Imry, in Directions in Condensed Matter Physics, G. Grinstein, G. Mazenko, eds., World Scientific, Singapore (1986).
20.
B. L.
Al'tshuler
,
JETP Lett.
41
,
648
(
1985
).
P. A.
Lee
,
A. D.
Stone
,
Phys. Rev. Lett.
55
,
1622
(
1985
).
21.
B. L.
Al'tshuler
,
B. I.
Shklovskii
,
Sov. Phys. JETP
64
,
127
(
1986
).
22.
B. L.
Al'tshuler
,
B. Z.
Spivak
,
JETP Lett.
41
,
363
(
1985
).
23.
S.
Feng
,
P. A.
Lee
,
A. D.
Stone
,
Phys. Rev. Lett.
56
,
1960
(
1986
).
24.
G. A.
Garfunkel
,
G. B.
Alers
,
M. B.
Weissman
,
J. M.
Mochel
,
D. J.
Van Harlingen
,
Phys. Rev. Lett.
60
,
2773
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.