Neutron stars are nothing if not exotic. Most are the residues of massive stars that, after exhausting their thermonuclear fuel, die spectacularly as supernovae. Fifty percent more massive than our Sun, but only 20 kilometers in diameter, they are the densest objects in the universe. At the surface of a neutron star, the acceleration due to gravity is in excess of 1011 times that at the surface of Earth, so that the binding energy of a parcel of matter in a neutron star is about 10% of its rest mass. Hence mass accretion onto a neutron star, which releases over 100 MeV/nucleon, is a far more efficient energy conversion process than thermonuclear fusion, which releases approximately 8 MeV/nucleon. Theory suggests that neutron stars are about 95% neutrons in “chemical” equilibrium with a small admixture of protons and electrons: np++e. Some investigators have likened a neutron star to a giant nucleus with atomic mass about 1057. The pressure of strongly interacting degenerate neutrons at supranuclear densities is balanced by gravity to maintain a hydrostatic equilibrium in the canonical configuration described above. Neutron stars therefore are laboratories for both nuclear physics and general relativity.

1.
A general reference is S. L. Shapiro, S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, Wiley, New York (1983).
2.
R. N. Manchester, J. H. Taylor, Pulsars, Freeman, San Francisco (1977).
P. C.
Joss
,
S. A.
Rappaport
,
Ann. Rev. Astron. Astrophys.
22
,
537
(
1984
).
3.
I. Shelton, IAU circular no. 4316 (1987).
4.
A. S.
Grossman
,
H. J.
Graboske
Jr.
,
Astrophys. J.
180
,
195
(
1973
).
R. L.
Probst
,
Astrophys. J.
274
,
237
(
1973
).
5.
S. E. Woosley, T. A. Weaver, in Radiation Hydrodynamics in Stars and Compact Objects, D. Mihalas, K.‐H. A. Winkler, eds., Springer‐Verlag, Berlin (1986), p. 91.
6.
K.
Nomoto
,
Astrophys. J.
277
,
791
(
1984
).
7.
S. Chandrasekhar, An Introduction to Stellar Structure, U. Chicago P., Chicago (1939).
8.
S. E.
Woosley
,
T. A.
Weaver
,
Ann. Rev. Astron. Astrophys.
24
,
205
(
1986
).
9.
A.
Burrows
,
J. M.
Lattimer
,
Astrophys. J. Lett.
299
,
L19
(
1985
).
10.
T. J.
Mazurek
,
Nature
252
,
287
(
1974
).
11.
A.
Yahil
,
Astrophys. J.
265
,
1047
(
1983
).
12.
H. A.
Bethe
,
B. E.
Brown
,
J.
Applegate
,
J. M.
Lattimer
,
Nucl. Phys. A
324
,
487
(
1979
).
13.
E.
Baron
,
J.
Cooperstein
,
S.
Kahana
,
Phys. Rev. Lett.
55
,
126
(
1985
).
14.
J. R. Wilson, in Numerical Astrophysics, J. Centrella, J. LeBlanc, R. Bowers, eds., Jones and Bartlett, Boston (1985), p. 422.
J. R.
Wilson
,
R.
Mayle
,
S. E.
Woosley
,
T. A.
Weaver
,
Ann. N. Y. Acad. Sci.
470
,
267
(
1986
).
15.
S. A.
Colgate
,
R. H.
White
,
Astrophys. J.
143
,
626
(
1966
).
16.
H. A.
Bethe
,
J. R.
Wilson
,
Astrophys. J.
295
,
14
(
1985
).
17.
W. D.
Arnett
,
R. L.
Bowers
,
Astrophys. J. Suppl.
33
,
415
(
1977
).
18.
J. E. McClintock, in The Physics of Accretion onto Compact Objects (Lecture Notes in Physics, vol. 266), K. O. Mason, M. G. Watson, N. E. White, eds., Springer‐Verlag, Berlin (1986), p. 211.
19.
E. P. J.
van den Heuvel
,
G. M. H. J.
Habets
,
Nature
309
,
598
(
1984
).
20.
P. S. Conti, in Wolf‐Rayet Stars: Observations, Physics, Evolution, C. W. H. de Loore, A. J. Willis, eds., International Astronomical Union, Paris (1982), p. 3.
21.
L.
Landau
,
Phys. Z. Sowjetunion
1
,
285
(
1932
).
22.
W.
Baade
,
F.
Zwicky
,
Phys. Rev.
45
,
138
(
1934
).
23.
K.
Hirata
et al. (Kamiokande II collaboration),
Phys. Rev. Lett.
58
,
1490
(
1987
).
R. M.
Bionta
et al. (IMB collaboration),
Phys. Rev. Lett.
58
,
1494
(
1987
).
24.
A.
Burrows
,
J. M.
Lattimer
,
Astrophys. J. Lett.
318
,
L63
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.