The crystalline and electronic structures of semiconductors reflect a delicate balance of very large electromagnetic forces, and consequently minute compositional variations or small perturbations can induce large changes in the properties of these materials. for several decades now, research scientists and device designers have exploited his exceptional flexibility to tailor the electronic and optical properties of semiconductors for a variety of fundamental studies and applications. Semiconductor technology has made its most apparent impact, of course, in solid‐state electronics.

1.
See, for example, L. L. Chang, K. Ploog, eds., Molecular Beam Epitaxy and Heterostructures, NATO Advanced Science Institute Series, Nijhoff, Dordrecht (1985).
2.
See, for example, J. B. Mullin, S. J. C. Irvine, R. H. Moss, P. N. Robson, D. R. Wight, eds., Metal Organic Vapor Phase Epitaxy 1984, North‐Holland, Amsterdam (1984).
3.
L.
Esaki
,
R.
Tsu
,
IBM J. Res. Dev.
14
,
61
(
1970
);
for an outline of the history of Esaki's and Tsu's discovery, with Leroy Chang, of artificial semiconductor superlattices, PHYSICS TODAY, March, p. 87.
4.
See, for example, D. S. Chemla, D. A. B. Miller, P. W. Smith, Device and Circuit Applications of III‐V Semiconductor Superlattices and Modulation Doping, R. Dingle, ed., Academic, New York (1985).
5.
See, for example, F. Capasso, Device and Circuit Applications of III‐V Semiconductor Superlattices and Modulation Doping, R. Dingle, ed., Academic, New York (1985).
6.
R. Dingle, Festkörperprobleme 15, H. J. Queisser, ed., Pergamon, Braunschweig (1975).
7.
R.
Dingle
,
H. L.
Stormer
,
A. C.
Gossard
,
W.
Wiegmann
,
Appl. Phys. Lett.
33
,
665
(
1978
);
H. L.
Stormer
,
Surf. Sci.
132
,
519
(
1983
).
8.
T.
Mimura
,
S.
Hiyamizu
,
T.
Fujii
,
K.
Nambu
,
Japan J. Appl. Phys.
19
,
L225
(
1980
);
D.
Delagebeaubeuf
,
P.
Delesclilse
,
P.
Etienne
,
M.
Laviron
,
J.
Chaplart
,
N. T.
Linh
,
Electron Lett.
16
,
667
(
1980
);
H. L. Stormer, Festkörperprobleme24, P. Grosse, ed., Vieweg, Braunschweig (1984).
9.
See Y. Suematsu's article on page 32 of this issue.
10.
D. S. Chemla, D. A. B. Miller, J. Opt. Soc. Am. B, to be published July 1985.
11.
C. V.
Shank
,
Science
219
,
1031
(
1983
).
12.
W. H. Knox, R. F. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, Proc. Fourth Int. Conf. Ultrafast Phenomena, Springer‐Verlag, Berlin (1984), p. 162;
Phys. Rev. Lett.
54
,
1306
(
1985
).
13.
D. A. B.
Miller
,
D. S.
Chemla
,
T. C.
Damen
,
A. C.
Gossard
,
W.
Wiegman
,
T. H.
Wood
,
C. A.
Burrus
,
Phys. Rev. Lett.
53
,
2173
(
1984
).
14.
R. C.
Miller
,
A. C.
Gossard
,
D. A.
Kleinman
,
O.
Munteanu
,
Phys. Rev. B
29
,
3740
(
1984
).
for a review of exciton spectroscopy in quantum‐well structures, see
R. C.
Miller
,
D. A.
Kleinman
, Proc. 3rd Trieste IUPAP Semiconductor Symp.,
J. Lumin.
30
,
520
(
1985
).
15.
B. F.
Levine
,
C. G.
Bethea
,
W. T.
Tsand
,
F.
Capasso
,
K. K.
Thornber
,
R. C.
Fluton
,
D. A.
Kleinman
,
Appl. Phys. Lett.
43
,
769
(
1983
).
16.
Y.
Silberberg
,
P. W.
Smith
,
D. J.
Eilenberger
,
D. A. B.
Miller
,
A. C.
Gossard
,
W.
Wiegmann
,
Optics Lett.
9
,
507
(
1984
).
17.
H. M.
Gibbs
,
S. S.
Tarng
,
J. L.
Jewell
,
D. A.
Weinberger
,
K.
Tai
,
A. C.
Gossard
,
S. L.
McCall
,
A.
Pasner
,
W.
Wiegmann
,
Appl. Phys. Lett.
41
,
221
(
1982
).
18.
P. W. Smith, Proc. Conf. Electro '83, session record 11/1, IEEE, New York (1983).
19.
T. H.
Wood
,
C. A.
Burrus
,
D. A. B.
Miller
,
D. S.
Chemla
,
T. C.
Damen
,
A. C.
Gossard
,
W.
Wiegmann
,
IEEE J. Quantum Electron.
QE‐21
,
117
(
1985
).
20.
D. A. B.
Miller
,
D. S.
Chemla
,
T. C.
Damen
,
A. C.
Gossard
,
W.
Wiegman
,
T. H.
Wood
,
C. A.
Burrus
,
Appl. Phys. Lett.
45
,
13
(
1984
).
D. A. B.
Miller
,
D. S.
Chemla
,
T. C.
Damen
,
A. C.
Gossard
,
W.
Wiegman
,
T. H.
Wood
,
C. A.
Burrus
,
Optics Lett.
9
,
567
(
1984
);
to be published in IEEE J. Quantum Electron. (1985).
21.
F.
Capasso
,
Sur. Sci.
513
,
142
(
1984
).
22.
H.
Kroemer
,
RCA Rev.
18
,
332
(
1957
).
This content is only available via PDF.
You do not currently have access to this content.