Great advances in science alter our view of the world. Galileo Galilei's theory of motion, Albert Einstein's theory of special relativity and Werner Heisenberg's invention of quantum mechanics, with its subsequent interpretation by Niels Bohr and Heisenberg himself, spring immediately to mind (figure 1). In exploring these episodes we must recognize that historical narrative without investigation of conceptual transformation is just chronology.
REFERENCES
1.
W.
Heisenberg
, 78
, 156
(1932
), Part II;2.
3.
H. Kramers, H. Hoist, The Atom and the Bohr Theory of Its Structure, Gyldendal, London (1923).
4.
W. Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, u. A., A. Hermann, K. v. Meyenn, V. F. Weisskopf, eds., Springer‐Verlag, Berlin (1979).
5.
6.
7.
8.
9.
Archives for the History of Quantum Physics, AIP, New York.
10.
11.
N. Bohr, Nature (Supplement) 580 (1928).
12.
L. Brown, L. Hoddeson, PHYSICS TODAY, April 1982, p. 36;
R. Stuewer, in Otto Hahn and the Rise of Nuclear Physics, W. Shea, ed., Science History, New York (1984).
13.
Letter on deposit at the AIP Center for History of Physics.
14.
15.
16.
17.
W. Heisenberg, in Pieter Zeeman, Nijhoff, The Hague (1935), p. 108.
18.
19.
20.
21.
G. Wentzel, in The Physicist's Conception of Nature, J. Mehra, ed., Reidel, Dordrecht (1973), p. 380.
22.
G. Wentzel, Einführung in die Quantentheorie der Wellenfelder, Deuticke, Vienna (1943), translated by C. Houtermans, J. M. Jauch, as G. Wentzel, Quantum Theory of Fields, Interscience, New York (1949).
23.
See A. I. Miller, Imagery in Scientific Thought: Creating 20th‐century Physics, Birkhauser, Boston (1984).
This content is only available via PDF.
© 1985 American Institute of Physics.
1985
American Institute of Physics
You do not currently have access to this content.