Many important biological, chemical and physical phenomena take place on time scales of nanoseconds or picoseconds. Those working to unravel the time development of such fast processes have long recognized that pulsed electromagnetic radiation and particle beams often make more incisive probes than do continuous emissions. During the last decade, a powerful new device joined the arsenal of modulated radiation sources available to scientists attacking problems that require good temporal resolution—the high‐energy storage ring.

1.
See for example
R.
Lopez‐Delgado
,
A.
Tramer
,
I. H.
Munro
,
Chem. Phys.
5
,
72
(
1974
);
K. M.
Monahan
,
V.
Rehn
,
Nucl. Inst. and Meth.
152
,
225
(
1978
);
N.
Schwentner
,
U.
Hahn
,
D.
Einfeld
,
G.
Muhlhaupt
,
Nucl. Inst. and Meth.
167
,
499
(
1979
);
I. H.
Munro
,
N.
Schwentner
,
Nucl. Inst. and Meth.
208
,
819
(
1983
);
I. H. Munro, A. P. Sabersky in Synchrotron Radiation Research, H. Winick, S. Doniach, eds., Plenum, New York (1980).
2.
For a detailed description of the operation of storage rings, see M. Sands in Proceedings of the International School of Physics—Enrico Fermi, B. Touschek, ed., Academic, New York (1971), page 257.
3.
C.
Benard
,
M.
Rousseau
,
J. Opt. Soc. Am.
64
,
1433
(
1974
);
R.
Lopez‐Delgado
,
Opt. Comm.
27
,
195
(
1978
).
4.
R. L.
Cohen
,
G. L.
Miller
,
K. W.
West
,
Phys. Rev. Letts.
41
,
381
(
1978
).
5.
J. C.
Wang
,
R. F.
Wood
,
P. O.
Pronko
,
Appl. Phys. Lett.
35
,
455
(
1978
);
R. F.
Wood
,
G. E.
Giles
,
Phys. Rev. B
23
,
2923
(
1981
).
6.
V.
Heine
,
J. A.
Van Vechten
,
Phys. Rev. B
13
,
1622
(
1976
);
J. A.
Van Vechten
,
R.
Tsu
,
F. W.
Saris
,
D.
Hoonhout
,
Phys. Lett.
74A
,
417
(
1979
);
J. A.
Van Vechten
,
M.
Wautelet
,
Phys. Rev. B
23
,
5543
(
1981
).
7.
B. C.
Larson
,
C. W.
White
,
T. S.
Noggle
,
D. M.
Mills
,
Phys. Rev. Lett.
48
,
337
(
1982
);
B. C.
Larson
,
C. W.
White
,
T. S.
Noggle
,
J. F.
Barhorst
,
D. M.
Mills
,
Appl. Phys. Lett.
42
,
282
(
1983
).
8.
C.‐C.
Glüer
,
W.
Graeff
,
H.
Moller
,
Nucl. Inst. and Meth.
208
,
701
(
1983
).
9.
P. A.
Goddard
,
G. F.
Clark
,
B. K.
Tanner
,
R. W.
Whatmore
,
Nucl. Inst. and Meth.
208
,
705
(
1983
);
R. W.
Whatmore
,
P. A.
Goddard
,
B. K.
Tanner
,
G. F.
Clar
,
Nature
299
,
44
(
1982
).
10.
P. G.
Debrunner
,
H.
Frauenfelder
,
Ann. Rev. of Phys. Chem.
33
,
283
(
1982
);
J. A.
McCammon
,
M.
Karplus
,
Acc. Chem. Res.
16
,
187
(
1983
).
11.
For a more detailed account of x‐ray absorption spectroscopic techniques, see H. Winick, S. Doniach, eds., Synchrotron Radiation Research, Plenum, New York (1980).
12.
D. M.
Mills
,
A.
Lewis
,
A.
Harootunian
,
J.
Huang
,
B.
Smith
,
Science
223
,
811
(
1984
).
13.
T. A.
Carlson
,
R. M.
White
,
J. Chem. Phys.
44
,
4510
(
1966
).
14.
J. B.
Hastings
,
V. O.
Kostroun
,
Nucl. Inst. and Meth.
208
,
815
(
1983
).
15.
V.
Rehn
,
Nucl. Inst. and Meth.
177
,
193
(
1980
);
E.
Gratton
,
R.
Lopez‐Delgado
,
Rev. Sci. Inst.
50
,
789
(
1979
).
16.
M. Hart in Characterization of Crystal Growth Defects by X‐Ray Methods, B. K. Tanner, D. K. Bowen, eds., Plenum, New York (1980), page 479.
17.
M.
Hart
,
D. P.
Siddons
,
Nature
275
,
45
(
1978
).
18.
For a description of wigglers and undulators for enhanced x‐ray flux, see H. Winick, G. Brown, K. Halbach, J. Harris, PHYSICS TODAY, May 1981, page 50;
G.
Brown
,
K.
Halbach
,
J.
Harris
,
H.
Winick
,
Nucl. Inst. and Meth.
208
,
65
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.