The main concern of kinetic theory over the last 35 years has been to understand the properties of dense gases and liquids in terms of the interactions and motions of the molecules. For dilute gases, the Boltzmann equation has provided a basis for a kinetic description of nonequilibrium properties, and although there are still many unresolved questions, there is little doubt that this equation is the correct starting point for an understanding of dilute gases. In spite of numerous efforts, no one has yet succeeded in deriving a comparable equation for dense gases or liquids. Several generalizations to higher densities of the Boltzmann equation have been found, and many interesting and unexpected results have been discovered, but something we could call a systematic and complete theory has so far eluded us. I want to emphasize that this article does not pretend in any way to be a survey of kinetic theory. I shall only try to sketch a few of the most striking developments in the kinetic theory of dense fluids to give an idea of what has been achieved so far. It will become clear then that a dense fluid behaves in many respects quite differently from what one would expect on the basis of the properties of dilute gases as known from the Boltzmann equation.

1.
E. G. D.
Cohen
,
Physica
118A
,
17
(
1983
).
2.
J. R. Dorfman, H. van Beijeren, in Statistical Mechanics B, B. J. Berne, ed. Plenum, New York (1977), page 65;
J. R.
Dorfman
,
Physica
106A
,
77
(
1981
).
3.
B.
Najafi
,
E. A.
Mason
,
J.
Kestin
,
Physica
119A
,
387
(
1983
).
4.
E. G. D. Cohen, in Fundamental Problems in Statistical Mechanics I, E. G. D. Cohen, ed. North‐Holland, Amsterdam (1962) page 110;
volume II (1968), page 228.
5.
E. H.
Hauge
,
E. G. D.
Cohen
,
J. Math. Phys.
10
,
397
(
1969
);
E. H. Hauge, in Sitges Intern. School Statistical Mechanics31, G. Kizczenow, J. Marro, eds., Springer‐Verlag, New York (1974) page 338.
6.
J. R.
Dorfman
,
E. G. D.
Cohen
,
Int, Journal. Quant. Chem.
16
,
63
(
1982
).
7.
J. V.
Sengers
,
D. T.
Gillespie
,
J. J.
Perez‐Esandi
,
Physica
90A
,
365
(
1978
).
8.
B. Kamgar‐Parsi, J. V. Sengers, Proc. 8th Symp. Thermophysical Properties, Vol. I, J. V. Sengers, ed. Amer. Soc. Chem. Eng. (1982) 166.
9.
J.
Kestin
,
O.
Korfali
,
J. V.
Sengers
,
B.
Kamgar‐Parsi
,
Physica
106A
,
415
(
1981
).
10.
C.
Bruin
,
Phys. Rev. Lett.
29
,
1670
(
1972
);
C.
Bruin
,
Physica
72
,
261
(
1974
).
11.
R.
Zwanzig
,
Annu. Rev. Phys. Chem.
16
,
67
(
1965
);
W. A. Steele, in Transport Phenomena in Fluids, H. J. M. Hanley, ed., Dekker, New York (1969) 209.
12.
J. J.
Erpenbeck
,
W. W.
Wood
,
Phys. Rev.
A26
,
1648
(
1982
);
Y.
Pomeau
,
P.
Résibois
,
Phys. Rep.
19C
,
64
(
1975
).
13.
M. H.
Ernst
,
E. H.
Hauge
,
J. M. J.
van Leeuwen
,
J. Stat. Phys.
15
,
7
(
1975
).
14.
J. R.
Dorfman
,
E. G. D.
Cohen
,
Phys. Rev.
A6
,
788
(
1972
).
15.
J. J.
Erpenbeck
,
W. W.
Wood
,
J. Stat. Phys.
24
,
455
(
1981
).
16.
I. M.
de Schepper
,
P.
Verkerk
,
A. A.
van Well
,
L. A.
de Graaf
,
Phys. Rev. Lett.
50
,
974
(
1983
).
17.
K. Kawasaki, in Phase Transitions and Critical Phenomena, C. Domb, M. S. Green, eds. Academic, New York (1976) page 166.
18.
P. Ehrenfest, T. Ehrenfest, Conceptual Foundations of the Statistical Approach in Mechanics, Cornell U.P., Ithaca, N.Y. (1959) 103.
19.
S. Chandresakkar, Hydrodynamic and Hydromagnetic Stability, Dover, New York (1961), page 9;
F. H. Busse, in Hydrodynamic Instabilities and the Transition to Turbulence, H. L. Swinney, J. P. Gollub, eds. Springer‐Verlag, New York (1981) page 97.
20.
T. R.
Kirkpatrick
,
E. G. D.
Cohen
,
J. R.
Dorfman
,
Phys. Rev.
A26
,
972
,
995
(
1982
);
D.
Beysens
,
Physica
118A
,
255
(
1983
).
21.
T. R.
Kirkpatrick
,
E. G. D.
Cohen
,
Phys. Lett.
88A
,
44
(
1982
);
and in Statistical Physics and Chaos in Fusion Plasmas, C. W. Horton, L. E. Reichl, eds., Wiley, New York (1984).
22.
R.
Zwanzig
,
Proc. Natl. Acad. Sci. USA
78
,
3296
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.