During the few microseconds between its laser‐induced creation in a pure semiconductor crystal and its destruction by recombination, a bound electron–hole pair, or exciton, is very active. Like the negative and positive charge carriers from which it forms, the exciton exhibits great mobility, whether it is coaxed by an applied force or simply moves under its own thermal energy. And like an atom in free space, it is bound by Coulomb forces, has discrete energy levels and may combine with other excitons into molecules or even condense into a liquid‐like state. In a semiconductor crystal such as silicon, all of this occurs at temperatures below about 30 K, for these weakly bound neutral particles ionize easily into electrons and holes at higher temperatures. The study of these particles and their products has occupied many physicists over the last couple of decades, and the investigations continue to uncover interesting new phenomena.

1.
See, for example, W. A. Harrison, Electronic Structure and the Properties of Solids, Freeman, San Francisco (1980).
2.
See, for example, D. L. Dexter, R. S. Knox, Excitons, Wiley, New York (1965).
3.
S. Nikitine in Excitons at High Density, Springer, New York (1975).
Also,
E. F.
Gross
,
Nuovo Cimento Suppl.
3
,
672
(
1956
).
4.
P. L.
Gourley
,
J. P.
Wolfe
,
Phys. Rev.
B20
,
3319
(
1979
);
P. L.
Gourley
,
J. P.
Wolfe
,
Phys. Rev. Lett.
40
,
526
(
1978
);
P. L.
Gourley
,
J. P.
Wolfe
,
Phys. Rev. B
24
,
5970
(
1981
).
5.
M. A.
Tamor
,
J. P.
Wolfe
,
Phys. Rev. Lett.
44
,
1703
(
1980
).
6.
R. S.
Markiewicz
,
J. P.
Wolfe
,
C. D.
Jeffries
,
Phys. Rev.
B15
,
1988
(
1977
).
7.
M. A.
Lampert
,
Phys. Rev. Lett.
1
,
450
(
1958
).
8.
See, for example, the review articles by T. M. Rice, and by J. C. Hensel, T. G. Phillips, G. A. Thomas, Solid State Physics, Vol. 32, Academic, New York (1977).
Also,
C. D.
Jeffries
,
Science
189
,
955
(
1975
).
9.
G. A. Thomas, V. B. Timofeev in Optical Properties of Solids, Handbook on Semiconductors, Vol. 2, M. Balkanski, ed., North‐Holland, Amsterdam (1980).
10.
J.
Shah
,
M.
Combescot
,
A. H.
Dayem
,
Phys. Rev. Lett.
38
,
1497
(
1977
).
11.
M.
Greenstein
,
J. P.
Wolfe
,
Phys. Rev. Lett.
41
,
715
(
1978
);
M.
Greenstein
,
J. P.
Wolfe
,
Phys. Rev. B
24
,
3318
(
1981
).
12.
R. S.
Markiewcz
,
M.
Greenstein
,
J. P.
Wolfe
,
Sol. St. Comm.
35
,
339
(
1980
).
13.
N. F. Mott, Metal Insulator Transitions, Barnes and Noble, New York (1974).
14.
E.
Hanamura
,
H.
Haug
,
Physics Lett. C
33
,
209
(
1977
).
15.
A.
Mysyrowicz
,
J. Physique
41
,
C7
281
(
1980
).
16.
D.
Hulin
,
A.
Mysyrowicz
,
C. Benoit
a la Guillaume
,
Phys. Rev. Lett.
45
,
190
(
1980
).
L. L.
Chase
,
N.
Peyghambarian
,
G.
Grynberg
,
A.
Mysyrowicz
,
Phys. Rev. Lett.
42
,
1231
(
1979
);
also, E. Hanamura, in reference 3.
17.
See D. C. Reynolds, T. C. Collins, Excitons: Their Properties and Uses, Academic, New York (1981), page 252, and references therein.
This content is only available via PDF.
You do not currently have access to this content.