Since the beginning of the solar system, natural particle detectors have been recording the passage of charged particles from the sun and cosmic rays. Now, in addition to developing the latent images of these fossil trails of damage in solids and learning about the nature of ancient radiation, we are creating new and more sensitive detectors of a similar kind. These detectors, which are finding a wide variety of applications, take advantage of the fact that a highly charged particle penetrating any nonconducting solid leaves a submicroscopic trail that can be chemically amplified. The increased chemical reactivity of the trails of radiationdamaged material is the basis for the so‐called etched‐track process, by which we make the particle tracks large enough to measure in an optical microscope. As we will see, there is sufficient information in the tracks to allow us to determine a particle's charge and velocity.

1.
R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids, University of California Press, Berkeley (1975).
2.
See articles in Solid State Nuclear Track Detectors, H. François et al., eds., Pergamon, New York (1980).
3.
R. L.
Fleischer
,
American Scientist
67
,
194
(
1979
).
4.
A useful review of models of track production in solids is given by
R. L.
Fleischer
,
Prog. Materials Science
25
(
1981
), in press.
5.
For surveys of extraterrestrial track studies see papers in The Ancient Sun, R. O. Pepin, J. A. Eddy, R. B. Merrill, eds., Pergamon, New York (1980), and in the proceedings of the Lunar and Planetary Science Conferences held annually in Houston.
6.
L. E. Seiberling, J. E. Griffith, T. A. Tombrello, Proc. 11th Lunar Sci. Conf., Houston, 17–21 March, 1980.
7.
D. O'Sullivan, P. B. Price, K. Kinoshita, G. Willson, Nature, to be published.
8.
A. C. Nelson, Lawrence Berkeley Laboratory Report No. LBL‐11147 (1980).
9.
J. N.
Goswami
,
D.
Lal
,
Icarus
40
,
510
(
1979
).
10.
J. H.
Chan
,
P. B.
Price
,
Phys. Rev. Lett.
35
,
539
(
1975
);
S.
Biswas
,
N.
Durgaprasad
,
J.
Nevatia
,
V. S.
Venkatavaradan
,
J. N.
Goswami
,
U. B.
Jayanthi
,
D.
Lal
,
S. K.
Mattoo
,
Astrophys. Space Sci.
35
,
337
(
1975
).
11.
J. M.
Nitschke
et al.,
Nucl. Phys.
A352
,
138
(
1981
).
12.
J. D. Stevenson, P. B. Price, Phys. Rev. C, in press.
13.
E. V. Benton, R. P. Henke, C. A. Tobias, W. R. Holley, J. Fabrikant, page 725 of reference 2.
14.
G. Kraft, T. C. H. Yang, T. Richards, C. A. Tobias, Lawrence Berkeley Laboratory Report No. LBL‐11220 (1980), page 375.
15.
D. J.
Gore
,
T. J.
Jenner
,
Phys. Med. Biol.
25
,
1095
(
1980
).
16.
N. M. Ceglio, E. V. Benton, page 755 of reference 2.
17.
R. W.
Deblois
,
C. P.
Bean
,
R. K. A.
Wesley
,
J. Colloid Interface Sci.
61
,
323
(
1977
).
18.
H.
Heitmann
,
C.
Fritsche
,
P.
Hansen
,
J. P.
Krumme
,
R.
Spohr
,
K.
Witter
,
J. Mag. Magnetic Materials
7
,
40
(
1978
).
19.
H. W.
Alter
,
R. L.
Fleischer
,
Health Physics
40
,
63
(
1981
).
20.
B. G.
Cartwright
,
E. K.
Shirk
,
P. B.
Price
,
Nucl. Instr. Meth.
153
,
457
(
1978
).
21.
G. Tarlé, S. P. Ahlen, P. B. Price, Nature, to be published (1981).
22.
G. D.
Westfall
,
L. W.
Wilson
,
P. J.
Lindstrom
,
H. J.
Crawford
,
D. E.
Greiner
,
H. H.
Heckman
,
Phys. Rev. C
19
,
1309
(
1979
).
23.
E. M.
Friedlander
,
R. W.
Gimpel
,
H. H.
Heckman
,
Y. J.
Karant
,
B.
Judek
,
E.
Ganssauge
,
Phys. Rev. Lett.
45
,
1084
(
1980
).
24.
P. B.
Price
et al.,
Proc. 6th Lunar Sci. Conf.
,
3449
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.