Thin films play a vital role in nearly all electronic and optical devices. They have long been familiar as antireflection coatings on window glass, video screens, camera lenses and other optical devices; these are generally films less than 100 nm thick made from a transparent (dielectric) material with a refractive index less than that of the substrate. In solar‐energy conversion, similar layers of thin films are now serving as antireflection coatings on solar‐energy collectors; semitransparent metal films are used in Schottky‐barrier solar cells; combinations of thin films are used for photothermal devices that generate low‐ or high‐grade heat; and thin semiconductor films on metal or glass substrates form a promising type of low‐cost solar cell. In integrated circuits, of course, thin films are pervasive: metal layers form all onchip electrical connections and gate regions for field‐effect transistors, to name just two examples; oxide or nitride films form insulating barriers between other films; and layers of semiconductors are integral parts of all the structures. One of the newest applications of thin‐film technologies is in circuits based films made from superconductors forming, for example, Josephson junctions such as the one shown in figure 1.

1.
B. O. Seraphin, in Solar Energy Conversion, Topics in Applied Physics31, B. O. Seraphin, ed., Springer, Berlin (1979).
2.
C. M.
Lampert
,
Sol. En. Materials
1
,
319
(
1979
).
3.
G. E.
Carver
,
Thin Solid Films
63
,
169
(
1979
).
4.
D. C.
Booth
,
D. D.
Allred
,
B. O.
Seraphin
,
Sol. En. Materials
2
,
107
(
1979
).
5.
R. E.
Peterson
,
J. R.
Ramsey
,
J. Vac. Sci. Technol.
12
,
471
(
1975
).
6.
J. C. C.
Fan
,
C. O.
Bozler
,
B. J.
Palm
,
Appl. Phys. Lett.
35
,
875
(
1979
).
7.
N. W. Geis, D. C. Flanders, D. A. Antoniadis, H. I. Smith, Tech. Digest 1979 IEDM, Washington, D.C., page 210.
8.
F. M. d'Heurle, R. Rosenberg in Physics of Thin Films7, Academic, New York (1973), page 257.
9.
D. Chaabra, N. Ainslie, D. Jepson, Proc. of the ECS Meeting, Dallas, Texas, May, 1967.
10.
I.
Ames
,
F. M.
d'Heurle
,
R. E.
Horstmann
,
IBM J. Res. and Dev.
14
,
461
(
1970
).
11.
R. Rosenberg, L. Berenbaum, in Proc. Europhys. Conf. on Atomic Transport, Marstrand, Sweden, June, 1970.
12.
R. Rosenberg, M. J. Sullivan, J. K. Howard in Thin Films—Interdiffusion and Reactions, J. M. Poate, K. N. Tu, J. W. Mayer, eds., Wiley, New York, (1978), page 13.
13.
D. M.
Mattox
,
Thin Solid Films
18
,
173
(
1973
).
14.
A.
Munitz
,
Y.
Komem
,
Thin Solid Films
37
,
171
(
1976
).
15.
K.
Nakamura
,
M. A.
Nicolet
,
J. W.
Mayer
,
R. J.
Blattner
,
C. A.
Evans
, Jr.
,
J. Appl. Phys.
46
,
4678
(
1975
).
16.
Test results obtained in conjunction with P. Garbarino and J. Gardiner, IBM, East Fishkill, New York.
17.
R. F.
Lever
,
J. K.
Howard
,
W. K.
Chu
,
P. J.
Smith
,
J. Vac. Sci. Technol.
14
,
158
(
1977
).
18.
T. S. Kuan, P. Ho, I. Ohodomari, IBM report.
19.
J. H.
Greiner
,
C. J.
Kircher
,
S. P.
Klepner
,
S. K.
Lahiri
,
A. J.
Warnecke
,
S.
Basavaiah
,
E. T.
Yen
,
J. M.
Baker
,
P. R.
Brosious
,
H.‐C. W.
Huang
,
M.
Murakami
,
I.
Ames
,
IBM J. Res. Develop.
,
24
,
195
(
1980
).
20.
J. M.
Baker
,
C. J.
Kircher
,
J. W.
Matthews
,
IBM J. Res. Develop.
,
24
,
223
(
1980
).
21.
J. H.
Greiner
,
J. Appl. Phys.
45
,
32
(
1974
).
22.
M.
Murakami
,
C. J.
Kircher
,
IEEE Proc. on Magnetics
Mag‐15
,
44
(
1977
).
23.
M.
Murakami
,
Acta Met.
26
,
175
(
1978
);
M.
Murakami
,
Thin Solid Films
55
,
101
(
1978
),
M.
Murakami
,
Thin Solid Films
59
,
105
(
1979
);
T. S. Kuan and M. Murakami, IBM report.
This content is only available via PDF.
You do not currently have access to this content.