Most scientific studies of imperfect solids concentrate on the properties of individual isolated defects. Such properties include their electronic structure, as shown by optical and spin‐resonance data, formation energies, and diffusion parameters. Yet these properties alone do not always determine those practical applications of solid‐state physics that exploit the behavior of defects. The principal extra ingredients can often be described as defect processes—how defects interact with each other and how the imperfect lattice evolves. That is, the time‐dependent behavior of the imperfect solid, not just its static properties, affects how it can be used.
REFERENCES
1.
2.
A. M. Stoneham, Theory of Defects in Solids, Oxford U.P. (1975).
3.
H. Haken, Synergetics, Springer, Berlin (1977).
4.
5.
6.
C. R. A. Catlow, K. Diller, L. W. Hobbs, Phil. Mag., in press.
7.
8.
C. R. A.
Catlow
, R. T.
Harley
, W.
Hayes
, J. Phys. C
10
, L559
(1977
).9.
10.
C. R. A.
Catlow
, W. C.
Mackrodt
, M. J.
Norgett
, A. M.
Stoneham
, Phil. Mag.
35
, 177
(1977
);C. R. A.
Catlow
, W. C.
Mackrodt
, M. J.
Norgett
, A. M.
Stoneham
, Phil. Mag.
40
, 161
(1979
).11.
12.
13.
A.
Mainwood
, F. P.
Larkins
, A. M.
Stoneham
, Solid‐State Electron.
21
, 1431
(1978
).14.
15.
16.
17.
18.
19.
M. R. Hayns, AERE report R8806 (1977).
20.
the theory is reviewed by A. M. Stoneham, in AERE R7934 (R. S. Nelson, ed.) p. 319 (1974).
21.
R. T. K.
Baker
, P. S.
Harris
, R. B.
Thomas
, Surf. Sci.
46
, 311
(1974
).
This content is only available via PDF.
© 1980 American Institute of Physics.
1980
American Institute of Physics
You do not currently have access to this content.