The tokamak is a marvelous device for plasma confinement, but can it be made into a commercially viable reactor? This is a question being asked more and more often by the electric utilities and the informed public. As a magnetic container of hot plasma, the tokamak is without peer. Now that the complicating factor of impurity radiation has been removed, the self‐healing properties of the tokamak discharge, leading to good confinement scaling in both the collisional (MIT Alcator) and the collisionless (Princeton Large Torus) regimes, have become apparent. But satisfying the temperature, density and confinement time conditions for fusion is only a part of the story. The ultimate users of fusion—the electric utilities—are even more vitally interested in such factors as engineering feasibility, reliability and ease of maintenance, overall efficiency, total plant cost, small plant size, and safety and environmental impact. Since the tokamak was developed from the standpoint of plasma stability, there is concern that it may not be ideal from those other viewpoints. Indeed, there may be room for improvement in the accessibility allowed by a tight torus, in the high technology required for auxiliary heating, fueling, and treatment of wall surfaces, and in the costly equipment needed in breeding and containing tritium. Feasible solutions to these difficult engineering problems have been suggested—but are there better solutions?

1.
L. C.
Steinhauer
,
G. C.
Vlases
,
Nuclear Fusion
19
, to be published in
1979
.
2.
V. Bailey, J. Benford, R. Cooper, D. Dakin, B. Ecker, O. Lopez, S. Putnam, T. S. T. Young, Proceedings of the 2nd Int'l Topical Conf. on High Power Electron and Ion Beam Research and Technology (Laboratory of Plasma Studies, Cornell University, Ithaca, N.Y., 1978).
3.
E.
Ott
,
R. N.
Sudan
,
Appl. Phys. Lett.
29
,
5
(
1976
).
4.
N.
Hershkowitz
,
J. R.
Smith
,
H.
Kozima
,
Phys. Fluids
22
,
122
(
1979
).
5.
A. Y.
Wong
,
Y.
Nakamura
,
B. H.
Quon
,
J. M.
Dawson
,
Phys. Rev. Lett.
35
,
1156
(
1975
).
6.
J. R. Drake, D. W. Kerst, G. A. Navratil, R. S. Post, Plasma Physics and Controlled Nuclear Fusion Research 1976, II, page 333, IAEA, Vienna (1977);
Phys. Fluids
20
,
148
, page
156
(
1977
).
7.
T. Tamano, Y. Hamada, C. Moeller, T. Ohkawa, R. Prater, Plasma Physics and Controlled Nuclear Fusion Research 1974, II, page 97, IAEA, Vienna, (1975).
8.
R. W. Conn, G. Shuy, Fusion Technology Program Report FDM‐262, Revised, Univ. of Wisconsin, Madison, 1979.
9.
J. M. Dawson, EPRI Report ER‐429‐SR, Part C, Electric Power Research Institute, Palo Alto CA 94304, May 1977.
10.
R. T. Taussig, EPRI Report ER‐544 Electric Power Research Institute, Palo Alto, CA 94304, April 1977.
11.
C. W.
Hartman
,
G.
Carlson
,
M.
Hoffman
,
R.
Werner
,
Nuclear Fusion
17
,
909
(
1977
).
12.
R. A.
Gross
,
Nuclear Fusion
15
,
729
(
1975
).
13.
P. J. Turchi, D. L. Book, R. L. Burton, A. L. Cooper, J. of Magnetism and Magnetic Materials, to be published (1979).
14.
H. H.
Fleischmann
,
T.
Kammash
,
Nuclear Fusion
15
,
1143
(
1975
).
15.
M. A. Levine et al., Plasma Physics and Controlled Nuclear Fusion Research 1978, paper CN‐37‐E4 IAEA, Vienna, 1979.
16.
R. A. Dandl, H. O. Eason, P. H. Edmonds, A. C. England, G. E. Guest, C. L. Hedrick, J. T. Hogan, J. C. Sprott, Plasma Physics and Controlled Nuclear Fusion Research 1971, II, page 607, IAEA, Vienna, 1972.
17.
B. McNamara, D. V. Anderson, J. K. Boyd, J. A. Byers, R. Cohen, T. A. Cutler, L. S. Hall, R. F. Post, M. E. Rensink, Plasma Physics and Controlled Nuclear Fusion Research 1976, III, page 161, IAEA, Vienna, 1977.
18.
J. B.
Taylor
,
Phys. Rev. Lett.
33
,
1139
(
1974
).
19.
M. N. Bussac, H. P. Furth, M. Okabayashi, M. N. Rosenbluth, A. M. Todd, Plasma Physics and Controlled Nuclear Fusion Research 1978, Paper CN‐37‐X1 IAEA, Vienna, 1979.
This content is only available via PDF.
You do not currently have access to this content.