Devices that exploit the properties of elastic surface waves can perform very complex signal‐processing functions, identical to those carried out by conventional electromagnetic devices. The great advantage to using surface waves instead of electromagnetic waves is the tremendous reduction in size of surface‐wave devices compared to their electromagnetic counterparts. This great reduction in size is the result of the great difference between the elastic and electromagnetic velocities. Surface waves propagate at velocities approximately 105times slower than electromagnetic velocities; thus, at the same frequency, the elastic wavelength is 105times shorter than the electromagnetic wavelength. A further advantage is that the energy in the elastic surface wave can readily be sensed anywhere along its path.

1.
Lord
Rayleigh
,
Proc. London Math. Soc.
17
,
4
(
1885
).
2.
H. Kolsky, Stress Waves on Solids, Oxford U.P., London (1953).
3.
I. A. Viktorov, Rayleigh and Lamb Waves, Plenum, New York (1967).
4.
R. M.
White
,
Proc. IEEE
58
,
1238
(
1970
).
5.
J.
de Klerk
,
Ultrasonics
9
,
35
(
1971
).
6.
J. F. Nye, Physical Properties of Crystals, Oxford U.P., London (1960).
7.
M. J. P. Musgrave, Crystal Acoustics, Holden‐Day, San Francisco (1970).
8.
“Crystal Data,” Determination Tables, American Crystallographic Association, April 1963.
9.
W. G. Cady, Piezoelectricity, Dover, New York (1964).
10.
J. de Klerk, “Materials for Elastic Surface Wave Applications,” in the Proceedings of Ultrasonics Symposium 1970, (invited papers), IEEE 70C69SU.
11.
U. M. I. Skolnik, Radar Handbook, McGraw‐Hill, New York (1970).
12.
M. B.
Schulz
,
B. J.
Matsinger
,
M. G.
Holland
,
J. Appl. Phys.
41
,
2755
(
1970
).
13.
D.
Chauvin
,
G.
Coussot
,
E.
Dieulesaint
,
Elect. Letters
7
,
491
(
1971
).
14.
J.
Burnsweig
,
S. H.
Arneson
,
IEEE J. Solid State Circuits
SC‐7
,
38
(
1972
).
15.
J.
Vollmer
,
D.
Gandolfo
,
Science
175
,
129
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.