Since 1911 superconductivity at room temperature has been the dream of scientists and science‐fiction writers alike. Unfortunately for superconductivity, the boundary between these two dream worlds has become totally blurred during the last decade. Still, today, superconductivity at room temperature together with controlled thermonuclear fusion are often mentioned as the two most important and crucial problems in physics relevant to the needs of society. Controlled fusion has now become a distinct possibility, and its progress over the last twenty years has covered many orders of magnitude. During this same time, superconducting transition temperatures have expanded from a range of 0.4 K to 16 K to a range stretching from 0.0002 K to 21 K. If this upper limit could be further increased, not by another order of magnitude, but by a factor of as little as 1.2, or as large as 1.5, superconductivity, while still far from room temperature, would revolutionize our technology. This revolution would encompass electric power transmission, electric motors, high‐field electromagnets, and the metallurgy of magnetic suspensions as a whole. In this article I will explain why I believe that this factor of 1.5 is a distinct possibility. I will also explain why room‐temperature superconductivity (regardless of a thousand statements by theorists and an equal number of theories) is—in my opinion—pure science fiction.

1.
A. C.
Mota
,
P. M.
Brewster
,
A. C.
Lawson
,
R. W.
Fitzgerald
,
J. H.
Bishop
,
Phys. Lett.
34A
,
160
(
1971
).
2.
G.
Arrhenius
,
E.
Corenzwit
,
R.
Fitzgerald
,
G. W.
Hull
Jr
,
H. L.
Luo
,
B. T.
Matthias
,
W. H.
Zachariasen
, “
Superconductivity of Nb3(AlGe) Above 20.5 K)
,”
Proc. Natl. Acad. Sci. US
61
,
621
(
1968
).
3.
Intermetallic Compounds, (J. H. Westbrook, ed) Wiley, New York (1967);
“Progress in Cryogenics,” Vol. IV, pages 160–231, Heywood, London (1964);
National Bureau of Standards Technical Note No. 482. US Department of Commerce (1969).
4.
B. T.
Matthias
,
J. L.
Olsen
,
Phys. Lett.
13
,
202
(
1964
).
5.
T. R. R.
McDonald
,
E.
Gregory
,
G. S.
Barberich
,
D. B.
McWhan
,
T. H.
Geballe
,
J. W.
Hull
Jr
,
Phys. Lett.
14
,
16
(
1965
).
6.
B. T. Matthias, Physics of Solids at High Pressures, (C. T. Tomizuka, R. M. Emrick, eds.) Academic, New York (1965), page 225.
7.
J.
Wittig
,
Phys. Rev. Lett.
15
,
159
(
1965
).
8.
J.
Wittig
,
Z. Physik
195
,
215
(
1966
).
9.
I. V.
Berman
,
N. B.
Brandt
,
JETP Letters
10
,
55
(
1969
).
10.
J.
Wittig
,
B. T.
Matthias
,
Science
160
,
994
(
1968
).
11.
J.
Wittig
,
Phys. Rev. Lett.
21
,
1250
(
1968
).
12.
J.
Wittig
,
B. T.
Matthias
,
Phys. Rev. Lett.
22
,
634
(
1969
).
13.
J.
Wittig
,
Phys. Rev. Lett.
24
,
812
(
1970
).
14.
“Superconductivity,” (A Summary Account of the International Superconductivity Conference at Colgate University, August 26–29) physics today, February 1964, page 31.
15.
N. B. Brandt, N. I. Ginzburg, Scientific American, April 1971, page 83.
16.
M. B.
Maple
,
J.
Wittig
,
Kang Soo
Kim
,
Phys. Rev. Lett.
23
,
1375
(
1969
).
17.
A. C.
Lawson
,
J. Less Common Metals
23
,
103
(
1971
).
18.
M. C.
Krupka
,
A. L.
Giorgi
,
N. H.
Krikorian
,
E. G.
Szklarz
,
J. Less Common Metals
19
,
113
(
1969
).
19.
A. S.
Cooper
,
E.
Corenzwit
,
L. D.
Longinotti
,
B. T.
Matthias
,
W. H.
Zachariasen
,
Proc. Natl. Acad. Sci. US
67
,
313
(
1970
).
20.
B. T.
Matthias
,
T. H.
Geballe
,
L. D.
Longinotti
,
E.
Corenzwit
,
G. W.
Hull
,
R. H.
Willens
,
J. P.
Maita
,
Science
156
,
645
(
1967
).
21.
S.
Foner
,
E. J.
McNiff
Jr
,
B. T.
Matthias
,
T. H.
Geballe
,
R. H.
Willens
,
E.
Corenzwit
,
Phys. Lett.
31A
,
349
(
1970
).
22.
B. T.
Matthias
,
E.
Corenzwit
,
A. S.
Cooper
,
L. D.
Longinotti
,
Proc. Natl. Acad. Sci. US
68
,
56
(
1971
).
23.
A. L.
Giorgi
,
E. G.
Szkarlz
,
E. K.
Storms
,
Allen L.
Bowman
,
B. T.
Matthias
,
Phys. Rev.
125
,
837
(
1962
).
24.
W. A.
Little
, “
Possibility of Synthesizing Organic Superconductors
,”
Phys. Rev.
134
,
A1416
(
1964
).
25.
B. T.
Matthias
, “
Superconductivity versus Ferroelectricity
,”
Mat. Res. Bull.
5
,
665
(
1970
);
L. I.
Buravov
,
M. L.
Khidekel
,
I. F.
Shchegolev
,
E. B.
Yagubskii
, “
Superconductivity and Dielectric Constant of Highly Conductive Complexes of Tetracyanoquinodiemethane (TCQM)
,”
JEPT Letters
12
,
90
(
1970
).
26.
R. H.
Parmenter
, “
High‐Current Superconductivity
,”
Phys. Rev.
116
,
1390
(
1959
).
27.
W. L.
McMillan
, “
Transition Temperature of Strong‐Coupled Superconductors
,”
Phys. Rev.
167
,
331
(
1968
).
28.
V. I.
Ginzburg
, “
On Surface Superconductivity
,”
Zh. Eksp. Teor. Fiz.
47
,
2318
(
1964
)
V. I.
Ginzburg
,
Sov. Phys.‐JETP
20
,
1549
(
1965
);
V. I.
Ginzburg
, “
Problem of High Temperature Superconductivity I
,”
Usp. Fiz. Nauk
95
,
91
(
1968
);
V. I.
Ginzburg
, “
Problem of High Temperature Superconductivity II
,”
Usp. Fiz. Nauk
101
,
185
(
1970
)
V. I.
Ginzburg
,
Soviet Physics Uspekhi
13
,
335
(
1970
)
Proceedings of International Conference on the Science of Superconductivity, Physica (in press);
Proceedings of the International Symposium on the Physical and Chemical Problems of Organic Superconductors (in press).
29.
J. P.
Hurault
,
J. Phys. Chem. Solids
29
,
1765
(
1968
).
30.
H.
Frölich
,
Phys. Rev.
79
,
845
(
1950
);
J.
Bardeen
,
Phys. Rev.
80
,
567
(
1950
);
G.
Wentzel
,
Phys. Rev.
83
,
168
(
1951
);
W.
Kohn
,
Vachaspati
,
Phys. Rev.
83
,
462
(
1951
).
This content is only available via PDF.
You do not currently have access to this content.