IN THE SECOND “golden” decade of this century Albert Einstein unified physics and geometry and fulfilled a long cherished dream of Karl Friedrich Gauss, Bernhard Riemann and William K. Clifford. This geometrical theory of gravitation had “magnetic” types of velocity‐dependent forces and a finite velocity of gravitational interactions; it apparently predicted gravitational radiation. The equations describe gravitation in terms of the curvature of space‐time. Riemann gave the concept of the curvature of n‐dimensional space as a logical generalization of the concept of curvature of a two‐dimensional surface. Radii of curvature for such a surface are easy to visualize. There is a simple connection (given in the box on p. 39) between these radii and the sum of the angles of a small triangle made up of geodesic lines (figure 1).

1.
A.
Einstein
,
Ann. Physik
49
,
769
(
1916
).
2.
J. Weber, General Relativity and Gravitational Waves, Interscience, New York (1961), chap. 8.
3.
A. Einstein, Sitzungsberichte Pruss. Acad. Wiss., p. 688 (1916);
p. 154 (1918).
4.
A. S.
Eddington
,
Proc. Roy. Soc. (London)
A102
,
268
(
1923
).
5.
F. J. Dyson, chap. 12 in Interstellar Communication, A. G. W. Cameron, ed., W. A. Benjamin, New York (1963).
6.
J.
Weber
,
Phys. Rev. Letters
17
,
1228
(
1966
).
7.
J.
Weber
,
Phys. Rev. Letters
18
,
418
(
1967
).
8.
J.
Sinsky
,
J.
Weber
,
Phys. Rev. Letters
18
,
795
(
1967
).
9.
B.
Block
,
R.
Moore
,
J. Geophys. Res.
71
,
4361
(
1966
);
N.
Clarkson
,
L.
LaCoste
,
Trans. A.G.U.
38
,
8
(
1957
).
10.
J.
Weber
,
J.
Larson
,
J. Geophys. Res.
71
,
6005
(
1966
).
11.
A.
Einstein
,
Science
84
,
506
(
1936
).
12.
S.
Liebes
,
Phys. Rev.
133
,
B835
(
1964
).
13.
D. M.
Zipoy
,
Phys. Rev.
142
,
825
(
1966
).
This content is only available via PDF.
You do not currently have access to this content.