THE ELECTRON is one of the fundamental particles in the universe and is likely to remain one. It is as abundant as any other particle with the possible exception of the neutrino. There may be more neutrinos around, but I am not expert on that question. The electron has a definite charge and a definite rest mass.
REFERENCES
1.
Reprints of both Thomson's and Millikan's papers appear in Great Experiments in Physics. Morris Shamos, Ed. Henry Holt, New York, 1959.
2.
As is true of almost every major event in the history of physics, the proposals of Goudsmit and Uhlenbeck were not made without some previous provocative suggestions. See, for instance, Whittaker, A History of the Theories of Aether and Electricity, Vol. II, pages 133, 134. Harper, New York, 1960.
3.
4.
5.
6.
The emphasis on the molecular‐beam magnetic‐resonance method as a generalized spectrometric procedure is not made in the early papers. In 1939 Rabi, Millman, Kusch, and Zacharias (Phys. Rev. 55, 526) discussed the trajectories of molecules in a system of inhomogeneous magnetic fields and, very importantly, the process of changing the orientation of a magnetic dipole in a magnetic field.
7.
8.
9.
The use of the two‐wire system for producing inhomogeneous magnetic fields with precisely calculable properties was described by Rabi, Kellogg and Zacharias in 1934. The extrapolation of the system to iron magnets in which much higher fields would be produced was described by Millman, Rabi and Zacharias in 1938. (Phys. Rev. 53, 384).
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
This content is only available via PDF.
© 1966 American Institute of Physics.
1966
American Institute of Physics
You do not currently have access to this content.