In laser materials processing, localized evaporation caused by focused laser radiation results in a partially-ionized plume above the material surface. The beam is refracted and absorbed as it traverses the plume and these effects are of interest for process development. Here, plume-beam interactions are studied using an axisymmetric, high-temperature gasdynamic model of a plume formed by vapor from a flat iron surface. The beam propagation in the plume is calculated from the paraxial wave equation including absorption and refraction. It is shown that absorption of the beam in the plume has much less direct effect on the power density at the material surface than refraction does. Helium gas is more efficient than argon for reducing the beam refraction and absorption effects. Laser energy reflected from the material surface has significant effects on the plume properties.
Skip Nav Destination
International Congress on Applications of Lasers & Electro-Optics
October 14–18, 2018
Orlando, FL, USA
ISBN:
978-0-912035-64-2
PROCEEDINGS PAPER
CO2 laser-plume interaction in materials processing
K. R. Kim;
K. R. Kim
Ohio State University, IWSE
, 1971 Neil Ave. Columbus OH 43210, USA
Search for other works by this author on:
D. F. Farson
D. F. Farson
Ohio State University, IWSE
, 1971 Neil Ave. Columbus OH 43210, USA
Search for other works by this author on:
Published Online:
October 01 2000
Citation
K. R. Kim, D. F. Farson; October 14–18, 2018. "CO2 laser-plume interaction in materials processing." Proceedings of the International Congress on Applications of Lasers & Electro-Optics. ICALEO® 2000: Proceedings of the Laser Applications in the Automotive Industry Conference. Orlando, FL, USA. (pp. pp. E133-E142). ASME. https://doi.org/10.2351/1.5059486
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.