As a widely-used approach for surface modification, laser cladding plays a significant role in aerospace, turbine and other fields. However, the defects usually existing in laser cladding parts, such as pores, cracks, tensile residual stress, significantly affect the performance and the application of the cladding parts. In this study, SS316L alloy layer was fabricated on 45 steel substrate using laser cladding process assisted by multidimensional vibration. By changing the vibration direction, the microstructures and the properties of the coating and the bonding interface with various vibration parameters were analyzed and compared. The microstructures of the cladding layer and the matrix were analyzed by an optical microscope and a scanning electron microscopy (SEM). The results show that the multidimensional vibration is able to refine the columnar dendrites formed in the cladding layer. The transient excitation generated by the vibration enhances the convection of the molten pool in the solidification process, breaks the dendrite arm, and increases the nucleation rate. Meanwhile, affected by the multidimensional vibration, the porosity and the maximum pore size of the cladding layer significantly reduced. The tests of the microhardness distribution showed that the the average microhardness of the cladding layer significantly increased and the microhardness fluctuation decreased assisted by the multidimensional vibration. Experimental results also demonstrate that the effects of the three-dimensional vibration are more significant than the single vertical vibration. The proposed approach provides a potential way to improve the laser cladding process.

1.
Vilar
,
R.
,
Santos
,
E.C.
,
Ferreira
,
P.N.
,
Franco
,
N.
Silva
,
R.D.
(
2009
)
Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding
,
Acta Materialia
57
,
5292
5302
.
2.
Dubourg
,
L.
Archambeault
,
J.
(
2008
)
Technological and scientific landscape of laser cladding process in 2007
,
Surface & Coatings Technology
202
,
5863
5869
.
3.
Sexton
,
L.
,
Lavin
,
S.
,
Byrne
,
G.
Kennedy
,
A.
(
2002
)
Laser cladding of aerospace materials
,
Journal of Materials Processing Tech
122
,
63
68
.
4.
Ocelík
,
V.
,
Furár
,
I.
Hosson
,
J.T.M.D.
(
2010
)
Microstructure and properties of laser clad coatings studied by orientation imaging microscopy
,
Acta Materialia
58
,
6763
6772
.
5.
Zhou
,
S.
,
Zeng
,
X.
,
Hu
,
Q.
Huang
,
Y.
(
2008
)
Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization
,
Applied Surface Science
255
,
1646
1653
.
6.
Chew
,
Y.
Pang
,
J.H.L.
(
2016
)
Fatigue life prediction model for laser clad AISI 4340 specimens with multiple surface cracks
,
International Journal of Fatigue
87
,
235
244
.
7.
Zeng
,
C.
,
Tian
,
W.
,
Liao
,
W.H.
Hua
, L. (
2016
)
Microstructure and porosity evaluation in laser- cladding deposited Ni-based coatings
,
Surface & Coatings Technology
294
,
122
130
.
8.
Brückner
,
F.
,
Lepski
,
D.
Beyer
, E. (
2007
)
Modeling the Influence of Process Parameters and Additional Heat Sources on Residual Stresses in Laser Cladding
,
Journal of Thermal Spray Technology
16
,
355
373
.
9.
Emamian
,
A.
,
Corbin
,
S.F.
Khajepour
, A. (
2010
)
Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe–TiC composite coatings
,
Surface & Coatings Technology
205
,
2007
2015
.
10.
Yu
,
B.
(
2010
)
Studies of the Effects and Mechanism of Electromagnetic Stirring on the Microstructures and Hardness of Laser Cladding WC- Co Based Alloy Coating
,
Chinese Journal of Lasers
37
,
2672
2677
.
11.
Liu
,
F.
,
Cheng
,
H.
,
Yu
,
X.
,
Yang
,
G.
,
Huang
,
C.
,
Lin
,
X.
Chen
, J. (
2018
)
Control of microstructure and mechanical properties of laser solid formed Inconel 718 superalloy by electromagnetic stirring
,
Optics Laser Technology
99
,
12.
Wang
,
L.
,
Yao
,
J.
,
Hu
,
Y.
,
Zhang
,
Q.
,
Sun
,
Z.
Liu
,
R.
(
2017
)
Influence of electric-magnetic compound field on the WC particles distribution in laser melt injection
,
Surface & Coatings Technology
315
,
32
43
.
13.
Mizutani
,
Y.
,
Tamura
,
T.
Miwa
, K. (
2005
)
Microstructural refinement process of pure magnesium by electromagnetic vibrations
,
Materials Science and Engineering: A
413-414
,
205
210
.
14.
S,
Coelho
R.
,
Corpas
M
, A,
Moreto
J.
,
Jahn
A
,
Standfuss
J
,
Kaysser-Pyzalla Apinto
H.
(
2013
)
Induction-assisted laser beam welding of a thermomechanically rolled HSLA S500MC steel: A microstructure and residual stress assessment
,
Materials Science & Engineering A
578
,
125
133
.
15.
Wang
,
S.
,
Li
,
H.
,
Chen
,
X.
,
Chi
,
J.
,
Li
,
M.
,
Chai
,
L.
Xu
,
H.
(
2010
)
Improving microstructure and wear resistance of plasma clad Fe-based alloy coating by a mechanical vibration technique during cladding
,
Materials Science & Engineering A
528
,
397
401
.
16.
Ma
,
G.
,
Yan
,
S.
,
Wu
,
D.
,
Miao
,
Q.
,
Liu
,
M.
Niu
,
F.
(
2017
)
Microstructure Evolution and Mechanical Properties of Ultrasonic Assisted Laser Clad Yttria Stabilized Zirconia Coating
,
Ceramics International
17.
Liu
,
X.
,
Osawa
,
Y.
,
Takamori
,
S.
Mukai
,
T.
(
2008
)
Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration
,
Materials Science and Engineering: A
487
,
120
123
.
18.
Omura
,
N.
,
Murakami
,
Y.
,
Li
,
M.
,
Tamura
,
T.
,
Miwa
,
K.
,
Furukawa
,
H.
,
Harada
,
M.
Yokoi
,
M.
(
2009
)
Effects of Mechanical Vibration on Macrostructure and Mechanical Properties of AC4C Aluminum Alloy Castings
,
Materials Transactions
50
,
2578
2583
.
19.
Wu
,
W.
(
2000
)
Influence of vibration frequency on solidification of weldments
,
Scripta Materialia
42
,
661
665
.
20.
Tamura
,
T.
,
Matsuki
,
T.
Miwa
,
K.
(
2011
)
Refinement Factors of Mechanical Vibrations on Microstructure of Al-7 mass% Si Alloys
,
Materials Transactions
52
,
830
833
.
21.
Wu
,
S.
,
Xie
,
L.
,
Zhao
,
J.
Nakae
,
H.
(
2008
)
Formation of non-dendritic microstructure of semi- solid aluminum alloy under vibration
,
Scripta Materialia
58
,
556
559
.
22.
Piper
,
N.M.
,
Fu
,
Y.
,
Tao
,
J.
,
Yang
,
X.
To
,
A.C.
(
2011
)
Vibration promotes heat welding of single- walled carbon nanotubes
,
Chemical Physics Letters
502
,
231
234
.
23.
Zheng
,
Y.
,
Chen
,
J.
,
Shang
,
Y.
,
Chang
,
H.
,
Chen
,
H.
Shu
,
S.
(
2017
)
Numerical analysis of the influence of wall vibration on heat transfer with liquid hydrogen boiling flow in a horizontal tube
,
International Journal of Hydrogen Energy
42
.
24.
International
,
A.
(
2010
)
Standard Test Methods for Determining Average Grain Size
.
25.
Lippold
,
J.C.
(
2015
)
Welding Metallurgy and Weldability
.
This content is only available via PDF.
You do not currently have access to this content.