Advanced laser material processing is a perfect tool for precise adjustment or tuning of surface properties of polymers, metals and ceramics. Different process strategies were developed and applied in order to realize localized chemical patterns, defined morphological structures or topographical modifications at the micro-and nanometer scale.

In recent work laser-assisted surface functionalization was applied to nano-scaled and amorphous thin films and shows a great potential for various application fields such as biological surfaces, tribological systems and thin film lithium-ion batteries. For this purpose, we have combined r.f. magnetron sputtering and subsequent laser material processing of nano-scaled thin film electrode materials (LiCoO2, SnO2) and amorphous carbon layers (a-C:H, a-C:O). In the latter case it was possible to adjust the wetting behavior and surface energy by a photolytically driven chemical modification as well as by surface structuring on micro-and nanometer scale. Laser structuring and surface modification of electrode materials for lithiumion batteries was applied to significantly improve the electrochemical cycling stability, especially for increased electrical discharge currents. The modified surfaces were studied with regard to their chemical composition, morphology and electrochemical properties.

1.
Pfleging
,
W.
,
Kohler
,
R.
,
Schierjott
,
P.
&
Hoffmann
,
W.
(
2009
)
Laser patterning and packaging of CCD-CE-Chips made of PMMA
,
Sensors and Actuators B
138
,
336
343
.
2.
Fujii
,
S.
,
Kuroki
,
S. I.
,
Kotani
,
K.
&
Ito
,
T.
(
2007
)
Enlargement of crystal grains in thin silicon films by continuous-wave laser irradiation
,
Jpn. J. Appl. Phys. Part 1
46
(
4B
),
2501
2504
.
3.
Chen
,
Y. T.
,
Naessens
,
K.
,
Baets
,
R.
,
Liao
,
Y. S.
&
Tseng
,
A. A.
(
2005
)
Ablation of transparent materials using excimer lasers for photonic applications
,
Opt. Rev.
12
,
427
441
.
4.
Pfleging
,
W.
,
Przybylski
,
M.
&
Brückner
,
H.J.
(
2006
)
Excimer laser material processing: state-of-the-art and new approaches in microsystem technology
,
SPIE
6107
,
61070G
.
5.
Pfleging
,
W.
,
Torge
,
M.
,
Bruns
,
M.
,
Trouillet
,
V.
,
Welle
,
A.
&
Wilson
,
S.
(
2009
)
Laser-and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion
,
Appl. Surf. Sci.
255
,
5453
5457
.
6.
Wilson
,
S.
,
Pfleging
,
W.
,
Welle
,
A.
,
Saint-Martin
,
S.
&
Kirby
,
P.
(
2008
)
An Automated Polymer Patch Clamping System for High Throughput Screening and Cell Network Measurement
,
Galvanotechnik
99
,
2578
2584
.
7.
Chu
,
P.K.
&
Liuhe
,
L.
(
2006
)
Characterization of amorphous and nanocrystalline carbon films
,
Materials Chemistry and Physics
96
,
253
277
.
8.
Stüber
,
M.
,
Niederberger
,
L.
,
Danneil
,
F.
,
Leiste
,
H.
,
Ulrich
,
S.
,
Welle
,
A.
,
Marin
,
M.
&
Fischer
,
H.
(
2007
)
Surface Topography, Surface Energy andWettability of Magnetron-Sputtered Amorphous Carbon (a-C) Films and Their Relevance for Platelet Adhesion
,
Adv. Eng. Mat.
9
,
1114
1122
.
9.
Yang
,
H.
,
Amiruddin
,
S.
,
Bang
,
H. J.
,
Sun
,
Y. K.
&
Prakash
,
J.
(
2006
)
A review of Li-Ion cell chemistries and their potential use in hybrid electric vehicles
,
J. Ind. Eng. Chem.
12
,
12
38
.
10.
Wang
,
Y.
&
Cao
,
G. Z.
(
2008
)
Developments in nanostructured cathode materials for high-performance lithium-ion batteries
,
Adv. Mat.
20
,
2251
2269
.
11.
Ketterer
,
B.
,
Vasilchina
,
H.
,
Seemann
,
K.
,
Ulrich
,
S.
,
Besser
,
H.
,
Pfleging
,
W.
,
Kaiser
,
T.
&
Adelhelm
,
C.
(
2008
)
Development of high power density cathode materials for Li-ion batteries
,
Int. J. Mater. Res.
99
,
1171
1176
.
12.
Zhang
,
Y.
,
Chung
,
C.
&
Zhu
,
M.
(
2008
)
Growth of HT-LiCoO2 thin films on Pt-metalized silicon substrates
,
Rare Met.
27
,
266
272
.
13.
J. L.
Tirado
(
2003
)
Inorganic materials for the negative electrode of lithium-ion batteries: state of the art and future prospects
,
Materials Science and Engineering R
40
,
103
136
.
14.
Kratzsch
,
A.
,
Ulrich
,
S.
,
Leiste
,
H.
,
Stueber
,
M.
&
Holleck
,
H.
(
1999
)
Influence of the process gas, gas pressure, r.f. power and geometrical arrangement on the magnetron plasma parameters for various thin film materials of the systems Ti-N and B-C-N
,
Surf. Coat. Technol.
119
,
949
955
.
15.
Casiraghi
,
C.
,
Piazza
,
F.
,
Ferrari
,
A.C.
,
Grambole
,
D.
&
Robertson
J.
(
2005
)
Bonding in hydrogenated diamond-like carbon by Raman spectroscopy
,
Diamond and Related Materials
14
,
1098
1102
.
16.
Klein-Wiele
,
J.-H.
&
Simon
,
P.
(
2003
)
Fabrication of periodic nanostructures by phase-controlled multiple-beam interference
,
Applied Physics Letters
83
,
4707
4709
.
17.
Ballutaud
,
D.
,
Simon
,
N.
,
Girard
,
H.
,
Rzepka
,
E.
&
Bouchet-Fabre
,
B.
(
2006
)
Photoelectron spectroscopy of hydrogen at the polycrystalline diamond surface
,
Diam. Rel. Mat.
,
15
,
716
719
.
18.
Filik
,
J.
,
May
,
P.W.
,
Pearce
,
S.R.J.
,
Wild
,
R.K.
&
Hallam
,
K.R.
(
2003
)
XPS and laser Raman analysis of hydrogenated amorphous carbon films
,
Diam. Rel. Mat.
12
,
974
978
.
19.
Antaya
,
M.
,
Cearns
,
K.
,
Preston
,
J. S.
,
Reimers
,
J. N.
&
Dahn
,
J. R.
(
1994
)
In-Situ Growth of Layered, Spinel, and Rock-Salt LiCoO2 by Laser-Ablation Deposition
,
J. Appl. Phys.
76
,
2799
2806
.
20.
Antolini
,
E.
(
2004
)
LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties
,
Solid State Ionics
170
,
159
171
.
21.
Kohler
,
R.
,
Proell
,
J.
,
Ulrich
,
S.
,
Trouillet
,
V.
,
Indris
,
S.
,
Przybylski
,
M.
&
Pfleging
,
W.
(
2009
)
Laser-assisted structuring and modification of LiCoO2 thin films
,
SPIE 7202
,
720207
.
This content is only available via PDF.
You do not currently have access to this content.