The development of electric circuit fabrication on heat and chemically sensitive polymer substrates has attracted significant interest as a pathway to low-cost or large-area electronics. We demonstrated the large area, direct patterning of microelectronic structures by selective laser sintering of nanoparticles without using any conventional, very expensive vacuum or photoresist deposition steps. Surface monolayer protected gold nanoparticles suspended in organic solvent was spin coated on a glass or polymer substrate. Then low power continuous wave Ar-ion laser was irradiated as a local heat source to induce selective laser sintering of nanoparticles by a scanning mirror system. Metal nanoparticle possessed low melting temperature (<150°C) due to thermodynamic size effect, and high laser absorption due to surface plasmon mode. These make metal nanoparticles ideal for the low temperature, low laser energy selective laser processing, and further applicable for electronics fabrication on a heat sensitive polymer substrate. We extended our laser selective sintering of nanoparticles research to a large area (> 4″ wafer) using scanning mirror to demonstrate current technology for industry level fabrication.

1.
Zschieschang
,
U.
,
Klauk
,
H.
,
Halik
,
M.
,
Schmid
,
G.
, and
Dehm
,
C.
, (
2003
)
Adv. Mater.
15
1147
51
.
2.
Redinger
,
D.
,
Molesa
,
S.
,
Yin
,
S.
,
Farschi
,
R.
, and
Subramanian
,
V.
, (
2004
)
IEEE trans. on electron devices
51
1978
83
.
3.
Loo
,
Y.L.
,
Someya
,
T.
,
Baldwin
,
K.W.
,
Bao
,
Z.
,
Ho
,
P.
,
Dodabalapur
,
A.
,
Katz
,
H.E.
, and
Rogers
,
J.A.
, (
2002
)
Proc. Natl. Acad. Sci.
99
10252
6
.
4.
Zaumseil
,
J.
,
Someya
,
T.
,
Bao
,
Z.
,
Loo
,
Y.L.
,
Cirelli
,
R.
, and
Rogers
,
J.A.
, (
2003
)
Appl. Phys. Lett.
82
793
5
.
5.
Blanchet
,
G.B.
,
Loo
,
Y.L.
,
Rogers
,
J.A.
,
Gao
,
F.
and
Fincher
,
C.R.
, (
2003
)
Appl. Phys. Lett.
82
463
5
6.
Stutzmann
,
N.
,
Friend
,
R.H.
, and
Sirringhaus
,
H.
, (
2003
)
Science
299
1881
84
.
7.
Ganier
,
F.
,
Hajlaoui
,
R.
,
Yasser
,
A.
, and
Srivastava
,
P.
, (
1994
)
Science
265
1684
86
.
8.
Bao
,
Z.
,
Feng
,
Y.
,
Dodavalapur
,
A.
,
Raju
,
V.R.
, and
Lovinger
,
A.J.
, (
1997
)
Chem. Mater.
9
1299
301
.
9.
Ridley
,
B.A.
,
Nivi
,
B.
, and
Jacobson
,
J.M.
, (
1999
)
Science
286
746
9
.
10.
Ko
,
S.
,
Pan
,
H.
,
Luscomb
,
C.
,
Frèchet
,
J.M.J.
,
Grigoropoulos
,
C.P.
, and
Poulikakos
,
D.
, (
2007
)
Nanotechnology
18
,
345202
.
11.
Ko
,
S.
,
Pan
,
H.
,
Luscomb
,
C.
,
Frèchet
,
J.M.J.
,
Grigoropoulos
,
C.P.
, and
Poulikakos
,
D.
, (
2007
)
Appl. Phys. Lett.
90
141103(1-3)
.
12.
Wang
,
J.Z.
,
Zheng
,
Z.H.
,
Li
,
H.W.
,
Huck
,
W.T. S.
, and
Sirringhaus
,
H.
, (
2004
)
Nat. Mater
3
171
6
.
13.
Piqué
,
A.
,
Chrisey
,
D.B.
,
Fritz-Gerald
,
J.M.
,
McGill
,
R.A.
,
Auyeng
,
R.C.Y.
,
Wu
,
H.D.
,
Lakeou
,
S.
,
Nguyen
,
V.
,
Chung
,
R.
, and
Duiganan
,
M.
, (
2000
)
J. Mater. Res.
15
1872
1875
.
14.
Tan
,
B.
,
Venkatakrishnan
,
K.
, and
Tok
,
K.G.
, (
2003
)
Appl. Surf. Sci.
207
365
71
.
15.
Sirringhaus
,
H.
,
Kawase
,
T.
,
Friend
,
R.H.
,
Shimoda
,
T.
,
Inbasekaran
,
M.
,
Wu
,
W.
, and
Woo
,
E.P.
, (
2000
)
Science
290
2123
26
.
16.
Sirringhaus
,
H.
, and
Shimoda
,
T.
, (
2003
)
MRS bulletin
28
802
6
.
17.
Sele
,
C.W.
,
Werne
,
T.V.
,
Friend
,
R.H.
, and
Sirringhaus
,
H.
, (
2005
)
Adv. Mater.
8
997
1001
.
18.
Perelaer
,
J.
,
Klokkenburg
,
M.
,
Hendriks
,
C.E.
,
Schubert
,
U.S.
, (
2006
)
Adv. Mater.
18
2101
.
This content is only available via PDF.
You do not currently have access to this content.