Organic material direct writing was demonstrated based on nanomaterial enabled laser transfer (NELT). Through proper nanoparticle size and type, and the laser wavelength choice, a single laser pulse could transfer well defined and arbitrarily shaped tris-(8-hydroxyquinoline)Al patterns ranging from several microns to millimeter size. The unique properties of nanomaterials allow the laser induced forward transfer process to be effected at irradiation energies and temperatures lower than commonly used. The technique may be well suited for the mass production of temperature sensitive devices.
REFERENCES
1.
Hirano
, T.
, Matsuo
, K.
, Kohinata
, K.
, Hanawa
, K.
, Matsumi
, T.
, Matsuda
, E.
, Matsuura
, R.
, Ishibashi
, T.
, Yoshida
, A.
, and Sasaoka
, T.
, (2007
) Novel Laser Transfer Technology for Manufacturing Large-Sized OLED Displays
, SID 07 Digest
, 1592
.2.
Ko
, S.H.
, Chung
, J.
, Pan
, H.
, Grigoropoulos
, C.P.
, Poulikakos
, D.
, (2007
) Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing
, Sensors and Actuators A: Physical
, 134
, 161
3.
Ko
, S.H.
, Pan
, H.
, Grigoropoulos
, C.P.
, Luscombe
, C.K.
, Fréchet
, J.M.J.
, Poulikakos
, D.
, (2007
) Air stable high resolution organic transistors by selective laser sintering of inkjet printed metal nanoparticle
, Appl. Phys. Lett.
, 90
, 141103
4.
Ko
, S.H.
, Pan
, H.
, Grigoropoulos
, C.P.
, Luscombe
, C.K.
, Fréchet
, J.M.J.
, Poulikakos
, D.
, (2007
) All inkjet printed flexible electronics fabrication on a polymer substrate by low temperature high resolution selective laser sintering of metal nanoparticles
, Nanotechnology
, 18
,345202
5.
Bäuerle
, D.
(2000
) Laser Processing and Chemistry
, Springer
, New York
.6.
Piqué
, A.
, Chrisey
, D.B.
, Auyeung
, R.C.Y.
, Fitz-Gerald
, J.
, Wu
, H.D.
, McGill
, R.A.
, Lakeou
, S.
, Wu
, P.K.
, Nguyen
, V.
, Duignan
, M.
, (1999
) A novel laser transfer process for direct writing of electronic and sensor materials
, Appl. Phys. A
, 69
, S279
.7.
Suh
, M.C.
, Chin
, B.D.
, Kim
, M.
, Kang
, T.M.
, Lee
. S.T.
, (2003
), Enhanced luminance of blue light-emitting polymers by blending with hole-transporting materials
, Adv. Maters.
, 15
, 1254
.8.
Willis
, D.A.
, Grosu
, V.
, (2005
) Microdroplet deposition by laser-induced forward transfer
, Appl. Phys. Lett.
86
, 244103
.9.
Kyrkis
, K.
, Andreadaki
, A.
, Papazoglou
, D.
and Zergioti
, I.
, (2006
) Recent Advances in Laser Processing of Materials
, in Perrière
, J.
, Millon
, E.
, and Fogarassy
, E.
(ed) Elsevier
, 213
–241
.10.
Chrisey
, D.
, Piqué
, A.
, McGill
, R.
, Horwitz
, J.
, Ringeisen
, B.
, Bubb
, D.
, and Wu
, P.
, (2003
) Laser deposition of polymer and biomaterial films
, Chem. Rev.
103
, 553
.11.
Arnold
, C.
, Serra
, P.
, and Piqué
, A.
, (2007
) Laser Direct-Write Techniques for Printing of Complex Materials
, MRS Bull.
32
, 23
.12.
Korgel
, B.A.
, Fitzmaurice
, D.
, (1998
) Self-assembly of silver nanocrystals into two-dimensional nanowire arrays
, Adv. Maters.
10
(9
) 661
.13.
Ko
, S.
, Choi
, Y.
, Hwang
, D.J.
, Grigoropoulos
, C.P.
, Chung
, J.
and Poulikakos
, D.
, (2006
) Nanosecond laser ablation of gold nanoparticle films
, Appl. Phys. Lett.
89
, 141126
.14.
Wilson
, O.M.
, X.
Hu
, D.G.
Cahill
, and P.V.
Braun
., (2002
), Colloidal metal particles as probes of nanoscale thermal transport in fluids
Physical Review B
, 66
, 224301
15.
Wang
, R.Y.
, Segalman
, R.A.
, and Majumdar
, A.
, (2006
) Room temperature thermal conductance of alkanedithiol self-assembled monolayers
, Appl. Phys. Lett.
89
, 173113
.16.
Altman
, I.S.
, Agranovski
I.E.
, and Choi
, M.
, (2005
) On nanoparticle surface growth: MgO nanoparticle formation during a Mg particle combustion
, Appl. Phys. Lett.
87
, 5
.
This content is only available via PDF.
© 2010 Laser Institute of America.
2010
Laser Institute of America
You do not currently have access to this content.