Selective Laser Sintering (SLS) is a well-known technique for rapid prototyping, rapid manufacturing and rapid tooling and is fast gaining acceptance in various areas of applications such as aerospace, moulding and biomedical. SLS has gone through vast changes since its introduction more than two decades back. The process has become a leading technique for rapid manufacturing and rapid tooling and can process more types of materials than any other rapid prototyping/manufacturing techniques. The present paper gives an overview of the work done with an emphasis on its recent significant advances. The development occurred in the area of various materials (polymers, metals, ceramics) selection, binding mechanism, machines, application has been highlighted.

1.
S.
Kumar
.
Selective laser sintering: a qualitative and objective approach
.
JOM
, vol
55
, No
10
, pp.
43
47
,
2003
.
2.
J. P.
Kruth
,
G.
Levy
,
F.
Klocke
, and
T.
Childs
.
Consolidation phenomena in laser and powder-bed based layer manufacturing
.
CIRP Annals
, Vol
56
, No.
2
, pp.
730
759
,
2007
.
3.
J. P.
Kruth
,
G.
Levy
,
R.
Schindel
, and
T.
Craeghs
.
Consolidation of polymer powders by selective laser sintering
.
International Conference on Polymers and Moulds Innovations
,
Gent, Belgium
, pp.
15
30
,
2008
.
4.
S.
Kumar
and
J. P.
Kruth
.
Composites by Rapid Prototyping Technology
.
Materials and Design
, vol.
31
, Issue
2
, pp.
850
856
,
2010
.
5.
M. M.
Savalani
,
C. C.
Ng
,
H. C.
Man
, and
I.
Gibson
.
Layer manufacturing of Magenesium and its alloy structures for future applications
.
Proceedings of VRAP
,
Leiria, Portugal
,
2009
.
6.
K. A.
Mumtaz
and
N.
Hopkinson
.
Selective laser melting of thin wall parts using pulse shaping
.
Journal of Materials Processing Technology
, Vol.
210
, Issue
2
, pp.
279
287
,
2010
.
7.
T.
Traini
,
C.
Mangano
, and et al
Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants
.
Dental Materials
,
24
(
11
), pp.
1525
1533
,
2008
.
8.
L.
Hao
,
S.
Dadbaksh
,
O.
Seaman
, and
M.
Felstead
.
Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development
.
Journal of Materials Processing Technology
, vol.
209
, No.
17
, pp.
5793
5801
,
2009
.
9.
H.J.
Niu
and
I.T.H.
Chang
.
Instability of scan tracks of selective laser sintering of high speed steel powder
.
Scripta Materialia
, Vol.
41
, No.
11
, pp.
1229
1234
,
1999
.
10.
N. K.
Tolochko
,
T.
Laoui
,
T. V.
Khlopkov
,
S. E.
Mozzharov
,
V. I.
Titov
, and
M. B.
Ignatiev
.
Absorptance of powder materials suitable for laser sintering
.
Rapid Prototyping Journal
,
6
(
3
):
155
166
,
2000
.
11.
R.
Glardon
,
N.
Karapatis
, and
V.
Romano
.
Influence of Nd:YAG parameters on the selective laser sintering of metallic powders
.
Annals of the CIRP
,
50
(
1
):
133
136
,
2001
.
14.
E. C.
Santos
,
M.
Shiomia
,
K.
Osakadaa
, and
T.
Laoui
.
Rapid manufacturing of metal components by laser forming
.
Int. Journal of Machine Tools & Manufacture
, Vol
46
, issue
12-13
, pp
1459
1468
,
2006
.
18.
P.
Mercelis
,
J.-P.
Kruth
, and
J.
Van Vaeren-bergh
.
Feedback control of selective laser melting
. In
Proc. of the 15th Int. Symposium on Electromachining (ISEM XV)
,
Pittsburgh, Pennsylvania, USA
,
April 23-27 2007
. pp.
421
426
.
19.
P.
Fischer
,
H.
Leber
,
V.
Romano
,
H. P.
Weber
,
N. P.
Karapatis
,
C.
André
, and
R.
Glardon
.
Microstructure of near-infrared pulsed laser sintered titanium samples
.
Applied Physics A
,
78
(
8
):
1219
1227
,
2004
.
20.
P.
Mercelis
.
Control of Selective Laser Sintering and Selective Laser Melting Processes
. PhD thesis,
K. U. Leuven
,
2007
.
21.
J.
Van Vaerenbergh
.
Process optimization in selective laser melting
. PhD thesis,
University of Twente
,
2006
.
22.
W.
Zheng
,
Y.
Shi
,
J.
Liu
,
Z.
Lu
,
G.
Chen
, and
S.
Huang
. Type HRPM-11 machine for selective laser melting process.
Virtual and Rapid Manufacturing
(
Bartolo
et al
Editor), pp.
541
544
,
2008
.
23.
T.
Furumoto
,
T.
Ueda
,
N.
Kobayashi
,
A.
Yassin
,
A.
Hosokawa
, and
S.
Abe
.
Study on laser consolidation of metal powder with Yb:fiber laser-Evaluation of consolidation structure
.
Journal of Materials Processing Technology
, Vol
209
, No.
18-19
, pp.
5973
5980
,
2009
.
24.
J.
Yang
,
H.
Ouyang
, and
Y.
Wang
.
Direct metal laser fabrication: machine development and experimental work
.
International Journal of Advanced Manufacturing Technology
, Vol.
46
, pp.
1133
1143
,
2010
.
25.
K. H.
Choi
,
H. C.
Kim
,
Y. H.
Doh
, and
D. S.
Kim
.
Novel scan path generation method based on area division for SFFS
.
Journal of Mechanical Science and Technology
, vol.
23
, Issue
4
pp.
1102
1111
,
2009
.
27.
D. S.
Kim
,
S. W.
Bae
, and
K. H.
Choi
.
Development of industrial sff system using dual laser and optimal process
.
Robotics and Computer-Integrated Manufacturing
, Vol
23
, pp.
659
666
,
2007
.
28.
H. C.
Kim
,
K. H.
Choi
,
Y. H.
Doh
, and
D. S.
Kim
.
Fabrication of parts and their evaluation using a dual laser in the solid freeform fabrication system
.
Journal of Materials Processing Technology
, Vol
209
, pp.
4857
4866
,
2009
.
29.
Y.
Shi
,
W.
Zhang
,
Y.
Cheng
, and
S.
Huang
.
Compound scan mode developed from sub-area and contour scan mode for selective laser sintering
.
International Journal of Machine Tools and Manufacture
,
47
, pp.
873
883
,
2007
.
30.
J.-P.
Kruth
,
B.
Vandenbroucke
,
J.
Van Vaerenbergh
, and
P.
Mercelis
.
Benchmarking of different SLS/SLM processes as rapid manufacturing techniques
. In
Int. Conf. Polymers & Moulds Innovations (PMI)
,
Gent, Belgium
,
April 20 - 23 2005
. CD-Rom.
31.
K. K.
Ghany
and
S. F.
Moustafa
.
Comparison between the products of four RPM systems for metals
.
Rapid Prototyping Journal
12
(
2
) pp
86
94
,
2006
.
32.
M.
Mahesh
,
Y. S.
Wong
,
J. Y. H.
Fuh
, and et al
A six-sigma approach for benchmarking of RP & M processes
.
International Journal of Advanced Manufacturing Technology
, vol.
31
, No.
3-4
, pp.
374
387
,
2006
.
33.
G. D.
Kim
and
Y. T.
Oh
.
A bench mark study on rapid prototyping processes and machines: quantitative comparison of mechanical properties, accuracy, roughness, speed and material cost
.
Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture
, Vol
222
, No.
2
, pp.
201
215
,
2008
.
34.
H.
Exner
,
M.
Horn
,
A.
Streek
,
P.
Regenfuss
,
F.
Ullmann
, and
R.
Ebert
.
Laser micro sintering-a new method to generate metal and ceramic parts of high resolution with sub-micrometer powder
.
Proceedings of the 3rd International conference on Advanced research in virtual and rapid prototyping
,
Leira, Portugal
, pp.
491
499
,
2007
.
35.
D.
Zhiqiang
,
Z.
Zude
,
A.
Wu
, and
C.
Youping
.
A linear drive system for the dynamic focus module of SLS machines
.
International Journal of Advanced Manufacturing Technology
, Vol
32
, pp.
1211
1217
,
2007
.
36.
T. B.
Sercombe
and
G. B.
Schaffer
.
On the role of magnesium and nitrogen in the infiltration of aluminium by aluminium for rapid prototyping applications
.
Acta Materialia
, vol.
52
, No.
10
, pp.
3019
3025
,
2004
.
37.
G. N.
Levy
,
P.
Boehler
, and et al
Controlled local properties in the same part with Sintaflex: A new elastomer powder for the SLS process
.
Proceedings of the SFF symposium
,
Austin, Texas
, pp.
197
207
,
2005
.
38.
S.
Lao
,
J. H.
Koo
, and et al
Flame retardent Intumescent polyamide 11 nanocomposites-Further study
.
Proceedings of the SFF symposium
,
Austin, Texas
, pp.
46
55
,
2008
.
39.
J. P.
Kruth
,
L.
Froyen
,
M.
Rombouts
,
J.
Van Vaerenbergh
, and
P.
Mercelis
.
New ferro powder for selective laser sintering of dense parts
.
Annals of the CIRP
, Vol
52
/
1
, pp.
139
142
,
2003
.
40.
K.
Osakada
and
M.
Shiomi
.
Flexible manufacturing of metallic products by selective laser melting of powder
.
International Journal of Machine Tools & Manufacture
, vol.
46
, pp.
1188
1193
,
2006
.
41.
J.-P.
Kruth
,
L.
Froyen
,
J.
Van Vaerenbergh
,
P.
Mercelis
,
M.
Rombouts
, and
B.
Lauwers
.
Selective laser melting of iron based powder
.
Journal of Materials Processing Technology
,
149
(
1-3
):
616
622
,
2004
.
42.
J. P.
Kruth
,
S.
Kumar
, and
J.
Van Vaerenbergh
.
Study of laser-sinterability of ferro-based powders
.
Rapid Prototyping Journal
, Vol
11
, No.
5
, pp.
287
292
,
2005
.
43.
J. P.
Kruth
and
S.
Kumar
.
Statistical analysis of experimental parameters in selective laser sintering
.
Advanced Engineering Materials
, Vol
7
, No.
8
, pp.
750
755
,
2005
.
44.
Y.
Wang
,
J.
Bergstrom
, and
C.
Burman
.
Characterization of an iron-based laser-sintered material
.
Journal of Materials Processing Technology
, vol.
172
, Issue
1
, pp.
77
87
,
2006
.
45.
M.
Rombouts
,
J.-P.
Kruth
,
L.
Froyen
, and
P.
Mercelis
.
Fundamentals of selective laser melting of alloyed steel powders
.
Annals of the CIRP
,
55
(
1
):
187
192
,
2006
.
46.
A.
Simchi
.
Direct laser sintering of metal powders: mechanism, kinetics and microstructural features
.
Materials Science and Engineering: A
, Vol
428
, Issue
1-2
, pp.
148
158
,
2006
.
47.
S.
Kumar
.
Sliding Wear Behaviour of Dedicated Iron-based SLS Materials
.
Int. Journal of Advanced Manufacturing Technology
, Vol
43
, No.
3
, pp.
337
347
,
2009
.
48.
Y.
Imai
,
H.
Kyogoku
, and
K.
Shiraishi
.
Laser sintering of stainless steel using resin powder
.
Proceedings of the SFF symposium
,
Austin, Texas
, pp.
254
260
,
2005
.
49.
V. E.
Beal
,
P.
Erasenthiran
,
N.
Hopkinson
,
P.
Dickens
, and
C. H.
Ahrens
.
The effect of scan strategy on laser fusion of functionally graded H13/Cu materials
.
International Journal of Advanced Manufacturing Technology
, vol.
30
, pp.
844
852
,
2006
.
50.
M.
Badrossamay
and
T. H. C.
Childs
.
Further studies in selective laser melting of stainless and tool steel powders
.
International Journal of Machine Tools and Manufacture
,
47
(
5
), pp.
779
784
,
2007
.
51.
D.
Gu
,
Y.
Shen
,
S.
Fang
, and
J.
Xiao
.
Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods
.
Materials & Design
, vol.
30
, Issue
8
, pp
2903
2910
,
2007
.
52.
S.
Kumar
and
J. P.
Kruth
.
Wear Performance of SLS/SLM Materials
.
Advanced Engineering Materials
, vol.
10
, issue
8
, pp.
750
753
,
2008
.
53.
S.
Kumar
.
Microstructure and Wear of SLM Materials
.
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, Texas
, pp.
128
142
,
2008
.
54.
N. K.
Tolochko
,
A. S.
Artushkevich
,
T.
Laoui
,
J.-P.
Kruth
, and
L.
Froyen
. Medical testing of dental implants fabricated by laser processing of titanium powders. In
Int. Conf. on Advanced Research in virtual and rapid prototyping
, pages
629
632
,
2003
.
55.
B.
Vandenbroucke
and
J.-P.
Kruth
.
Selective laser melting of biocompatible metals for rapid manufacturing of medical parts
.
Rapid Prototyping Journal
, vol.
13
, No.
4
, pp.
196
203
,
2007
.
56.
I.
Shishkovsky
,
Yu.
Morozov
, and
I.
Smurov
.
Nanofractal surface structure under laser sintering of titanium and nitinol for bone tissue engineering
.
Applied Surface Science
,
254
, pp.
1145
1149
,
2007
.
57.
J. A.
Hunt
,
J. T.
Callaghan
,
C. J.
Sutcliffe
, and et al
The design and production of Co-Cr alloy implants with controlled surface topography by CAD-CAM method and their effects on oseointegration
.
Biomaterials
, vol.
26
, pp.
5890
5897
,
2005
.
58.
Y.
Ucar
,
T.
Akova
,
M. S.
Akyil
, and
W. A.
Brantley
.
Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns
.
The Journal of Prosthetic Dentistry
, Vol.
102
, Issue
4
, pp.
253
259
,
2009
.
59.
V. E.
Beal
,
P.
Erasenthiran
,
C. H.
Ahrens
, and
P.
Dickens
.
Evaluating the use of functionally graded materials inserts produced by selective laser melting on the injection moulding of plastic parts
.
Proceedings of IMechE Part B Journal of Engineering Manufacture
, vol.
221
, No.
6
, pp.
945
954
,
2007
.
60.
S.
Kumar
,
J. P.
Kruth
,
J.
Van Humbeeck
, and
A.
Voet
.
A study of degradation of laser-sintered moulds using wear tests
.
Rapid Prototyping Journal
, Vol
15
, No.
2
, pp.
104
110
,
2009
.
61.
D.
Gu
,
Y.
Shen
,
S.
Fang
, and
J.
Xiao
.
Metallurgical Mechanism in direct laser sintering of Cu-CuSn-CuP mixed powder
.
Journal of Alloys and Compounds
,
438
, pp
184
189
,
2007
.
62.
H. H.
Zhu
,
L.
Lu
,
J. Y. H.
Fu
, and
C. C.
Wu
.
Effect of braze flux on direct laser sintering of Cu-based metal powder
.
Materials & Design
, Vol
27
, Issue
2
, pp.
166
170
,
2006
.
63.
K. A.
Mumtaz
,
P.
Erasenthiran
, and
N.
Hopkinson
.
High density selective laser melting of waspaloy
.
Journal of Materials Processing Technology
, Vol
195
, No
1-3
, pp.
77
87
,
2007
.
64.
D. J. D.
Beer
and
G. J.
Booysen
.
Rapid tooling using Alumide
.
Proceedings of VRAP
, pp.
387
394
,
2005
.
65.
H.
Zarringhalam
,
N.
Hopkinson
,
N. F.
Kamperman
, and
J. J.
de Vlieger
.
Effect of processing on microstructure and properties of SLS Nylon 12
.
Materials Science and Engineering: A
, Vol
435-436
, pp
172
180
,
2006
.
66.
B.
Caulfield
,
P. E.
McHugh
, and
S.
Lohfeld
.
Dependence of mechanical properties of polyamide components on build parameters in the SLS process
.
Journal of Materials Processing Technology
, Vol
182
, Issue
1-3
, pp.
477
488
,
2007
.
67.
A.
Mazzoli
,
G.
Moriconi
, and
M. G.
Pauri
.
Characterization of an aluminium-filled polyamide powder for applications in selective laser sintering
.
Materials & Design
, Vol
28
, Issue
3
, pp
993
1000
,
2007
.
68.
G. V.
Salmoria
,
J. L.
Leite
,
C. H.
Ahrens
,
R. A.
Paggi
, and
A.
Lago
. Manufacture by selective laser sintering of functionally graded PA6/PA12 components with applications in antifriction materials.
Virtual and Rapid Manufacturing
(Editor-
Bartolo
et al), pp.
313
317
,
2008
.
69.
K.
Senthilkumaran
,
P. M.
Pandey
, and
P. V. M.
Rao
.
Influence of building strategies on the accuracy of parts in selective laser sintering
.
Materials and Design
,
30
, pp.
2946
2954
,
2009
.
70.
B. V.
Hooreweder
,
F. D.
Coninck
, and et al
Microstructural charac terization of SLS-PA12 specimens under dynamic tension/compression excitation
.
Polymer Testing
, doi: ,
2010
.
71.
Y. S.
Shi
,
Z. C.
Li
, and et al
Development of polymer alloy of polysterene (PS) and polyamide (PA) for building functional part based on selective laser sintering
.
Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications
,
218
(
L4
), pp.
299
306
,
2004
.
72.
K. H.
Tan
,
C. K.
Chua
,
K. F.
Leong
,
M. W.
Naing
, and
C. M.
Cheah
.
Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering
.
Proceedings of Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine
, Vol.
219
, Issue
H3
, pp.
183
194
,
2004
.
73.
H.
Zheng
,
J.
Zhang
,
S.
Lu
,
G.
Wang
, and
Z.
Xu
.
Effect of core-shell composite particles on the sintering behaviour and properties of nano-Al2O3/Polysterene composites prepared by SLS
.
Materials Letters
, Vol
60
, Issue
9-10
, pp.
1219
1223
,
2006
.
74.
M.
Schmidt
,
D.
Pohle
, and
T.
Rechtenwald
.
Selective Laser Sintering of PEEK
.
Annals of the CIRP
,
56
/
1
, pp.
205
208
,
2007
.
75.
B.
Partee
,
S. J.
Hollister
, and
S.
Das
.
Selective laser sintering process optimization for layered manufacturing of CAPA(R) 6501 Polycapralactone bone tissue engineering scaffolds
.
Journal of Manufacturing Science and Engineering-Transactions of the ASME
,
128
(
2
), pp.
531
540
,
2006
.
76.
F. E.
Wiria
,
K. F.
Leong
,
C. K.
Chua
, and
Y.
Liu
.
Poly-e-capralactone/hydroxyapatite for tissue engineering scaffold fabrication by selective laser sintering
.
Acta Biomaterialia
, Vol
3
, Issue
1
, pp
1
12
,
2007
.
77.
S. J.
Heo
,
S. E.
Kim
, and et al
Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process
.
Journal of Biomedical Materials Research Part A
, vol.
89A
pp.
108
116
, (
2009
).
78.
F. E.
Wiria
,
C. K.
Chua
,
K. F.
Leong
, and et al
Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering
.
Journal of Materials Science-Materials in Medicine
, Vol
19
, Issue
3
, pp
989
996
,
2008
.
79.
K. M.
Fan
,
W. L.
Cheung
, and
I.
Gibson
.
Movement of powder bed material during the selective laser sintering of bisphenol-A-polycarbonate
.
Rapid Prototyping Journal
11
(
4
) pp
188
198
,
2005
.
80.
N. R.
Harlan
,
R.
Reyes
,
D. L.
Bourell
, and
J. J.
Beaman
.
Titanium castings using laser-scanned data and selective laser-sintered zirconia molds
.
Journal of Materials Engineering and Performance
,
10
(
4
), pp.
410
413
,
2001
.
81.
F.
Cruz
,
J.
Simoes
,
T.
Coole
, and
C.
Bocking
.
Direct manufacture of hydroxyapatite based bone implants by selective laser sintering
.
Proceedings of the VRAP 2005
,
Leiria, Portugal
, pp.
119
126
,
2005
.
82.
R. S.
Evans
,
D. L.
Bourell
,
J. J.
Beaman
, and
M. I.
Campbell
.
Rapid manufacturing of silicon carbide composites
.
Rapid Prototyping Journal
, vol.
11
, No.
1
, pp.
37
40
,
2005
.
83.
Z. S.
Macedo
and
A. S.
Hernandes
.
A quantative analysis of the laser sintering of bismuth titanate ceramics
.
Materials Letters
, Vol
59
, Issue
27
, pp.
3456
3461
,
2005
.
84.
L.
Ji
and
Y.
Jiang
.
Laser Sintering of transparent Ta2O5 dielectric ceramics
.
Materials Letters
, Vol
60
, Issue
12
, pp.
1502
1504
,
2006
.
85.
J.
Wilkes
and
K.
Wissenbach
.
Rapid manufacturing of ceramic components for medical and technical applications via selective laser melting
.
Proceedings of the Euro-uRapid, Frankfurt
,
A4
/
1
,
2006
.
86.
A.
Gahler
,
J. G.
Heinrich
, and
J.
Gunster
.
Direct laser sintering of Al2O3 — SiO2 dental ceramic components by layer-wise slurry deposition
.
Journal of the American Ceramic Society
,
89
(
10
), pp.
3076
3080
,
2006
.
87.
A.
Streek
,
P.
Regenfuss
, and et al
Processing of silicon carbide by laser micro sintering
.
Proceedings of the SFF symposium
,
Austin, Texas
, pp.
349
358
,
2006
.
88.
R. D.
Goodridge
,
D. J.
Wood
,
C.
Ohtsuki
, and
K. W.
Dalgarno
.
Biological evaluation of an apatite-mullite glass-ceramic produced via selective laser sintering
.
Acta Biomaterialia
, Vol
3
, No
2
, pp.
221
231
,
2007
.
89.
I.
Shishkovsky
,
I.
Yadroitsev
,
Ph.
Bertrand
, and
I.
Smurov
.
Alumina-zirconium ceramic synthesis by selective laser sintering/melting
.
Applied Surface Science
,
254
, pp.
966
970
,
2007
.
90.
B. Y.
Stevinson
,
D. L.
Bourell
, and
J. J.
Beaman
.
Over-infiltration mechanisms in selective laser sintered Si/Sic preforms
.
Rapid Prototyping Journal
, Vol.
14
, Issue
3
, pp.
149
154
,
2008
.
91.
S.
Kumar
.
Manufacturing of WC-Co Moulds using SLS Machine
.
Journal of Materials Processing Technology
,
209
, pp.
3840
3848
,
2009
.
92.
J.
Duck
,
F.
Niebling
,
T.
Neesse
, and
A.
Otto
.
Infiltration as post-processing of laser sintered metal parts
.
Powder Technology
, Vol
145
, No.
1
pp.
62
68
,
2004
.
93.
D.
Uzunsoy
and
I. T. H.
Chang
.
The effect of infiltrant choice on the microstructure and mechanical properties of rapidsteel 2.0
.
Materials Letters
, Vol
59
, Issue
22
, pp.
2812
2817
,
2005
.
94.
S.
Kumar
and
J. P.
Kruth
.
Effect of bronze infiltration on laser sintered metallic parts
.
Materials and Design
, vol.
28
, issue
2
, pp.
400
407
,
2007
.
95.
S.
Kumar
,
J. P.
Kruth
, and
L.
Froyen
.
Wear Behaviour of SLS WC-Co Composites
.
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, Texas
, pp.
543
557
,
2008
.
96.
T.
Niino
and
H.
Yamada
.
Transparentization of SLS processed SMMA copolymer parts by infiltrating a thermosetting epoxy resin with tuned refractive index
.
Proceedings of the SFF symposium
,
Austin, Texas
, pp.
208
216
,
2005
.
97.
P.
Yu
and
G. B.
Schaffer
.
Microstructural evolution during pressureless infiltration of aluminium alloy parts fabricated by selective laser sintering
.
Acta Materialia
, Vol
57
, pp.
163
170
,
2009
.
98.
D. L.
Bourell
,
R. S.
Evans
, and
S. L.
Barrows
.
High temperature infiltration of nonmetallic articles produced by selective laser sintering
.
Materials Science Forum
,
475-479
, pp.
2861
2866
,
2005
.
99.
P.
Vallabhajosyula
and
D. L.
Bourell
.
Selective laser sintering and post-processing of fully ferrous components
.
SFF Symposum
,
Austin, USA
, pp.
179
185
,
2008
.
100.
A.
Goel
and
D. L.
Bourell
.
Electrochemical infiltration of laser sintered preforms with metals
.
SFF Symposum
,
Austin, USA
,
2009
.
This content is only available via PDF.
You do not currently have access to this content.