Use of appropriate modes of heat transfer in finite element modelling simulations of laser cladding and powder deposition is important for enhancing the reliability of the predicted results. An important contributory mode is melt pool convection, whose influence on residual stress generated during laser cladding process is the focus of this work. In this paper, an anisotropic enhanced thermal conductivity approach is used to analyse the three-dimensional thermo-structural characteristics of laser cladding and powder deposition of Inconel 718 on EN-43A mild steel substrate using finite element techniques. Compared with experimentally measured values, the results of the analysis indicated an over prediction in melt pool profile and size as well as higher peak temperatures from ignoring melt pool convection effect in finite element modelling of the process. With claims relating to the short nature of the duration for the solidification of a deposited clad, ignoring melt pool convection continues to be a common practice in modelling investigations of the laser cladding and powder deposition process. However, owing possibly to its resulting higher peak temperatures, the results of this investigation have portrayed the practice to cause higher residual stress prediction within the interior of the deposited clad and particularly around the interface, which is crucial location for the effective performance of a deposited clad.
Skip Nav Destination
4th Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication
March 23–25, 2010
Wuhan, People's Republic of China
ISBN:
978-0-912035-56-7
PROCEEDINGS PAPER
Influence of melt pool convection on residual stress induced in laser cladding and powder deposition Available to Purchase
A. M. Kamara;
A. M. Kamara
Laser Processing research Centre (LPRC), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester
, Sackville Street, Manchester M60 1QD, United Kingdom
Search for other works by this author on:
W. Wang;
W. Wang
Laser Processing research Centre (LPRC), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester
, Sackville Street, Manchester M60 1QD, United Kingdom
Search for other works by this author on:
S. Marimuthu;
S. Marimuthu
Laser Processing research Centre (LPRC), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester
, Sackville Street, Manchester M60 1QD, United Kingdom
Search for other works by this author on:
A. J. Pinkerton;
A. J. Pinkerton
Laser Processing research Centre (LPRC), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester
, Sackville Street, Manchester M60 1QD, United Kingdom
Search for other works by this author on:
L. Li
L. Li
Laser Processing research Centre (LPRC), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester
, Sackville Street, Manchester M60 1QD, United Kingdom
Search for other works by this author on:
Published Online:
March 01 2010
Citation
A. M. Kamara, W. Wang, S. Marimuthu, A. J. Pinkerton, L. Li; March 23–25, 2010. "Influence of melt pool convection on residual stress induced in laser cladding and powder deposition." Proceedings of the 4th Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. PICALO 2010: 4th Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. Wuhan, People's Republic of China. (pp. 604). ASME. https://doi.org/10.2351/1.5057208
Download citation file:
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.