Laser surface modification of materials has been the subject of considerable interest as a means of enhancing the corrosion performance of metallic alloys. Microstructural modification with or without changing surface chemical composition, in terms of homogenization/refinement of microstructure, dissolution/redistribution of intermetallic particles and extended solid solubility, resulting from rapid rates of cooling, provides the basis for property enhancement. This paper reviews our work on laser surface melting and laser surface alloying for the purpose of improved corrosion performance. Microstructural evolution and corrosion performance in a range of metallic alloys, followed by different treatments with different types of lasers, are presented. For laser surface melting of aerospace light alloys (aluminium alloys and magnesium alloys), the corrosion mechanisms of the laser-melted alloys have been discussed in the consideration of electrochemical characteristics of intermetallic particles with respect to the aluminium matrix, and cooling rates leading to different degrees of refinement/removal of intermetallic particles. For laser surface alloying, an example of titanium foil alloyed with nickel or palladium has been given to demonstrate the achievement of micro-alloying using an excimer laser for improvement of corrosion protection in hot H2SO4 solution.

1.
Viejo
,
F.
,
Pardo
,
A.
,
Rams
,
J.
,
Merino
,
M. C.
,
Coy
,
A. E.
,
Arrabal
,
R.
and
Matykina
,
E.
(
2008
),
High power diode laser treatments for improving corrosion resistance of A380/SiCp aluminium composites
,
Surface and Coatings Technology
,
202
,
4291
4301
.
2.
Zhang
,
Y. K.
,
Chen
,
J. F.
,
Lei
,
W. N.
, and
Xu
,
R. J.
(
2008
),
Effect of laser surface melting on friction and wear behavior of AM50 magnesium alloy
,
Surface and Coatings Technology
,
202
,
3175
3179
.
3.
Kwok
,
C. T.
,
Cheng
,
F. T.
and
Man
,
H. C.
(
2007
),
Microstructure and corrosion behavior of laser surface-melted high-speed steels
,
Surface and Coatings Technology
,
202
,
336
348
.
4.
Yue
,
T. M.
,
Yan
,
L. J.
, and
Chan
,
C. P.
(
2006
),
Stress corrosion cracking behavior of Nd:YAG laser-treated aluminum alloy 7075
,
Applied Surface Science
,
252
(
14
),
5026
5034
.
5.
Voisey
,
K. T.
,
Liu
,
Z.
and
Stott
,
F. H.
(
2006
),
Inhibition of metal dusting of Alloy 800H by laser surface melting
,
Applied Surface Science
,
252
(
10
),
3658
3666
.
6.
Kumar
,
S.
and
Banerjee
,
M. K.
(
2000
),
Desensitization of type 316 stainless steel by laser surface melting
,
Anti-Corrosion Methods and Materials
,
47
(
1
),
20
25
.
7.
Mazumder
,
J.
(
1994
),
Non-equilibrium Synthesis by Laser for Tailored Surface
,
Proceeding of the NATO Advanced Study Institute on Laser Processing: Surface Treatment and Film Deposition
,
Sesimbra, Portugal
.
8.
Autric
,
M. L
,
Perrais
,
J.
and
Barreau
,
G.
(
2000
),
Proc. SPIE Conference
,
San Jose, CA, USA
,
742
.
9.
Kurz
,
W.
and
Fisher
,
D. J.
(
1992
),
Fundamentals of Solidification
,
Trans Tech Publications
.
10.
Viejo
,
F.
,
Coy
,
A. E.
,
García-García
,
F. J.
,
Merino
,
M. C.
,
Liu
,
Z.
(
2010
),
Skeldon
,
P.
and
Thompson
,
G. E.
(2009),
Performance of AA2050-T8 aluminium alloy following Excimer laser surface melting and anodising processes
,
Thin Solid Films
, available on line 8 October 2009.
11.
Liu
,
Z.
,
Chong
,
P. H.
,
Skeldon
,
P.
,
Hilton
,
P. A.
,
Spencer
,
J. T.
and
Quayle
,
B.
(
2006
),
Fundamental understanding of the corrosion performance of laser-melted metallic alloys
,
Surface and Coatings Technology
,
200
,
5514
5525
.
12.
Zhao
,
M. Ch.
,,
Liu
,
M.
,
Song
,
G.
and
Atrens
,
A.
(
2008
),
Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91
,
Corrosion Science
,
50
,
1939
1953
.
13.
Pardo
,
A.
,
Merino
,
M. C.
,
Coy
,
A. E.
,
Arrabal
,
R.
,
Viejo
,
F.
and
Matykina
,
E.
(
2008
),
Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl
,
Corrosion Science
,
50
,
823
834
.
14.
Zhang
,
T.
,
Li
,
Y.
and
Wang
,
F.
(
2006
),
Roles of β phase in the corrosion process of AZ91D magnesium alloy
,
Corrosion Science
,
48
,
1249
1254
.
15.
Mathieu
,
S.
,
Rapin
,
C.
,
Steinmetz
,
J.
, and
Steinmetz
.
P.
(
2003
),
A corrosion study of the main constituent phases of AZ91 magnesium alloys
,
Corrosion Science
,
45
,
2741
2755
.
16.
Song
,
G.
,
Atrens
,
A.
,
Dargusch
,
M.
(
1999
),
Influence of microstructure on the corrosion of diecast AZ91D
,
Corros. Sci.
41
(
1999
)
249
273
.
17.
Ambat
,
R.
,
Aung
,
N.N.
and
Zhou
,
W.
(
2000
),
Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy
Corros. Sci.
42
,
1433
1455
.
18.
Coy
,
A.E.
,
Viejo
,
F.
,
Garcia-Garcia
,
F. J.
,
Liu
,
Z.
,
Skeldon
,
P.
and
Thompson
,
G. E.
(
2010
),
Effect of excimer laser surface melting on the microstructure and corrosion performance of the die cast AZ91D magnesium alloy
,
Corrosion Science
,
52
,
387
397
19.
Tsai
,
P. C.
and
Hsu
,
C. S.
(
2004
),
High temperature corrosion resistance and microstructural evaluation of laser-glazed plasma-sprayed zirconia/ MCrAlY thermal barrier coatings
,
Surface and Coatings Technology
,
183
,
29
34
.
20.
Liu
,
Z.
(
2002
),
Crack-free surface sealing of plasma sprayed ceramic coatings using an excimer laser
,
Applied Surface Science
,
186
(
1-4
),
135
139
.
21.
Neville
,
A.
and
Hodgkiess
,
T.
(
1999
),
Towards novel ceramics base coatings for corrosive wear applications
,
British Corrosion Journal
,
34
(
4
),
262
266
.
22.
Liu
,
Z.
,
Cabrero
,
J.
,
Niang
,
S.
and
Al-Taha
,
Z. Y.
(
2007
),
Improving corrosion and wear performance of HVOF-sprayed Inconel 625 and WC-Inconel 625 coatings by high power diode laser treatments
,
Surface and Coatings Technology
,
201
,
7149
7158
.
23.
Blanco-Pinzon
,
C.
,
Liu
,
Z.
,
Voisey
,
K.
,
Bonilla
,
F.A.
,
Skeldon
,
P.
and
Thompson
,
G.E.
(
2005
),
Excimer laser surface alloying of titanium with nickel and palladium for increased corrosion resistance
,
Corrosion Science
,
47
,
1251
1269
.
This content is only available via PDF.
You do not currently have access to this content.