Ultrafast laser sources with pulse durations in the sub-picosecond regime enable a precise machining of various materials. Pulse durations shorter than the electron phonon-coupling time lead to a low thermal load or even non-thermal ablation processes. Exploiting non-linear absorption processes, the absorption becomes nearly material independent when laser pulses of several microjoule energy and high beam quality are focused on the materials surface. Low pulse energies and intensities well above the vaporization threshold and therefore an eduction of the absorbed energy within the ablation product enables a high-precision cutting, ablation and drilling of, even weakly absorbing materials, multi-component and multi-layer systems. Additional, the focusing of ultrafast laser pulses in the volume of transparent dielectrics allows a localized modification of the bulk material. Specifically, defined refractive index changes in glasses and crystals can be utilized for waveguiding and beam-forming applications. A combined approach of material modification followed by chemical etching provides the possibility to manufacture micro-channels or 3D-micro mechanical parts. The 3D-capability of the in-volume material processing originates from the non-linear absorption of light in the initially transparent material.

To achieve high process efficiencies in material processing, laser sources delivering high average power are necessary. High average power is achieved either by high pulse energies and low repetition rates or high pulse repetition rates and moderate pulse energies. The optimum set of parameters is strongly depending on the process, the material and the application. In this paper, we present compact laser sources with a high flexibility in pulse energy and pulse repetition rate and an average power of several hundreds of Watt. Additional, a broad range of applications, from micro- and nanostructuring of various materials to volume processing of dielectrics will be presented.

1.
A.
Ancona
et al,
High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system
,
Opt. Exp.
Vol.
16
, No.
12
,
8958
(
2008
)
2.
I.
Mingareev
,
A.
Horn
,
Time-resolved invstigations of plasma and melt ejections in metals by pump-probe shadowgraphy
,
Appl. Phys. A
, (
2008
)
92
:
917
920
3.
Eaton
et al,
Heat accumulation effects in femtosecond written waveguides with variable repetition rates
,
Opt. Exp.
13
,
4708
(
2005
)
4.
P. F.
Moulton
, “
Spectroscopic and laser characteristics of Ti:Al2O3
”,
J. Opt. Soc. Am. B
3
(
1
),
125
(
1986
)
5.
L.
McDonagh
,
R.
Wallenstein
,
A.
Nebel
, “
111 W, 110 MHz repetition-rate, passively mode-locked TEM00Nd:YVO4 master oscillator power amplifier pumped at 888 nm
,”
Opt. Lett.
32
,
1259
1261
(
2007
)
6.
Tino
Eidam
,
Stefan
Hanf
,
Enrico
Seise
,
Thomas V.
Andersen
,
Thomas
Gabler
,
Christian
Wirth
,
Thomas
Schreiber
,
Jens
Limpert
, and
Andreas
Tünnermann
, “
Femtosecond fiber CPA system emitting 830 W average output power
,”
Opt. Lett.
35
,
94
96
(
2010
)
7.
P.
Russbueldt
,
T.
Mans
,
G.
Rotarius
,
J.
Weitenberg
,
H. D.
Hoffmann
, and
R.
Poprawe
, “
400W Yb:YAG Innoslab fs-Amplifier
,”
Opt. Express
17
,
12230
12245
(
2009
)
8.
F.
Röser
,
T.
Eidam
,
J.
Rothhardt
,
O.
Schmidt
,
D. N.
Schimpf
,
J.
Limpert
,
A.
Tünnermann
, “
Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system
,”
Opt. Lett.
32
,
3495
3497
(
2007
)
9.
K.
Du
et al,
Partially end-pumped Nd:YAG slab laser with a hybrid resonator
,
Opt. Lett.
23
,
370
372
(
1998
)
10.
J.
Giesekus
et al,
High power diode end pumped slab MOPA laser
,
CLEO 2002
, Paper CPDC2-1
11.
B.
Gronloh
,
T.
Mans
,
P.
Rußbüldt
,
B.
Jungbluth
,
R.
Wester
,
D.
Hoffmann
; “
High Power SHG at 515 nm by Means of Extracavity Frequency Conversion of Sub-Picosecond Pulses from a Mode-Locked Innoslab MOPA
”,
ASSP 2010
,
San Diego
, ATuA13
12.
I.
Martial
,
D.
Papadopulos
,
M.
Hanna
,
F.
Druon
,
P.
Georges
, “
Nonlinear compression in a rod-type fiber for high energy ultrashort pulse generation
,”
Opt. Express
17
,
11155
11160
(
2009
)
13.
S.
Hädrich
,
J.
Rothhardt
,
T.
Eidam
,
D.N.
Schimpf
,
F.
Röser
,
J.
Limpert
,
A.
Tünnermann
, “
Peak Power Scaling towards Ultrashort Pulses at High Repetition Rates
”,
OSA, CLEO/IQEC
2009
, CKW1
14.
F.
Tavella
,
A.
Marcinkevicius
,
F.
Krausz
, “
90 mJ parametric chirped pulse amplification of 10 fs pulses
,”
Opt. Express
14
,
12822
12827
(
2006
)
15.
D.
Wortmann
,
T.
Mans
,
J.
Weitenberg
, “
Multi-100 W average power fs-laser for material processing applications
”,
ICALEO 2009
, M101, (
2009
)
16.
D.
Wortmann
,
M.
Ramme
, and
J.
Gottmann
, “
Refractive index modification using fs-laser double pulses
,”
Opt. Express
15
,
10149
10153
(
2007
)
17.
Interference microscopy of femtosecond laser written waveguides in phosphate glass
D.
Esser
,
D.
Mahlmann
,
D.
Wortmann
,
J.
Gottmann
,
Appl. Phys. B
, in press, DOI
18.
Wortmann
,
D.
,
Gottmann
J.
,
Brandt
N.
,
Horn-Solle
H.
(
2009
)
Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching
,
Optics Express
16
,
1517
1522
19.
Gottmann
J.
,
Hörstmann-Jungemann
M.
,
Hermans
M.
,
Beckmann
D.
(
2009
)
High Speed and High Precision Fs-laser Writing Using a Scanner with Large Numerical Aperture
,
JLMN-Journal of Laser Micro/Nanoengineering
4
,
192
196
20.
C. R. E.
Baer
et al, “
Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power
”,
Opt. Lett.
34
(
18
),
2823
(
2009
)
21.
Udo
Buenting
,
Hakan
Sayinc
,
Dieter
Wandt
,
Uwe
Morgner
, and
Dietmar
Kracht
, “
Regenerative thin disk amplifier with combined gain spectra producing 500 µJ sub 200 fs pulses
,”
Opt. Express
*
17
*,
8046
8050
(
2009
)
This content is only available via PDF.
You do not currently have access to this content.