The use of light as an information carrier is rapidly increasing. To fully exploit the advantages of this technology, the production of 3D photonic circuits is necessary. The inscription of defined defects by two-photon polymerization (2PP) of a photo polymer infiltrated in 3D photonic band gap templates has been identified as possible technique to fabricate 3D photonic components and circuits. The 2PP technique provides a platform to write 3D structures with features as small as 100 nm [1], which is sufficient for components operating in the infrared telecommunication windows. Multimode waveguides and cavities fabricated by 2PP technique have been reported recently [2]. The design of these defects for the production of passive components, such as waveguides, as well as the precise experimental achievement, is critical for the components functionality. Numerical simulation provides insight into the operational performance of the photonic component. This presentation will focus on the all steps including fabrication of opal templates, simulation of the designed waveguides and experimental inscription of defects by 2PP in opal templates.

1.
Takada
,
K.
,
Sun
,
H. B.
, and
Kawata
,
S.
, (
2005
)
Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting
,
Appl. Phys. Lett.
86
,
1122
1124
.
2.
Rinne
S. A.
,
Garcia-Santamaria
F.
, and
Braun
P. V.
, (
2007
)
Embedded cavities and waveguides in three-dimensional silicon photonic crystals
,
Nature Photonics
2
,
52
56
.
3.
Yablonovich
,
E.
(
1987
)
Inhibited spontaneous emission in solid-state physics and electronics
,
Phys. Rev. Lett.
58
,
2059
2062
.
4.
John
,
S.
(
1987
)
Strong localization of photons in certain disordered dielectric superlattices
,
Phys. Rev. Lett.
58
,
2486
2489
.
5.
Smith
,
D. R.
,
Dalichaouch
,
R.
,
Kroll
,
N.
, and
Schultz
,
S.
,
McCall
,
S. L.
and
Platzmann
,
P. M.
(
1993
)
Photonic band gap structures and defects in one and two dimensions
,
J. Opt. Soc. Am. B.
10
,
314
321
.
6.
Yuguang
Zhao
,
Grischkowsky
,
D.R.
(
2007
)
2-D Terahertz Metallic Photonic Crystals in Parallel-Plate Waveguides
,
Microwave theory and techniques
55
,
656
663
.
7.
Busch
,
K.
, and
John
,
S.
, (
1998
)
Photonic band gap formation in certain self-organizing systems
,
Phys. Rev. E
58
,
3896
3908
.
8.
Lin
,
S. Y.
,
Fleming
,
J. G.
,
Hetherington
,
D. L.
,
Smith
,
B. K.
,
Biswas
,
R.
,
Ho
,
K. M.
,
Sigalas
,
M. M.
,
Zubrzycki
,
W.
,
Kurtz
,
S. R.
, and
Bur
,
J.
(
1998
)
A three-dimensional photonic crystal operating at infrared wavelengths
,
Nature
404
,
53
56
.
9.
Braun
,
P. V.
,
Rinne
,
S. A.
, and
Garcia-Santamaria
,
F.
, (
2007
)
Introducing defects in 3D photonic crystals: state of the art
,
Adv. Materials
18
,
2665
2678
.
10.
Lavrinenko
,
A.
,
Borel
,
P. I.
,
Fradsen
,
L. H.
,
Thorhauge
,
M.
,
Harpoth
,
A.
,
Kristensen
,
M.
,
Niemi
,
T.
, and
Chong
,
H.M.H.
, (
2004
)
Comprehensive FDTD modelling of photonic crystal waveguide components
,
Optics Express
12
,
234
248
.
11.
Blanco
,
A.
,
López
,
C.
, (
2006
)
Silicon onion-layer nanostructures arranged in three dimensions
”,
Adv. Mat.
18
,
1593
1597
.
12.
Johnson
,
S. G.
, and
Joannopoulos
,
J. D.
, (
2001
)
Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis
,
Opt. Express
8
,
173
180
.
13.
Li
,
Z.-Y.
, and
Zhang
,
Z.-Q.
, (
2000
)
Fragility of photonic band gaps in inverse-opal photonic crystals
,
Phys. Rev. B
62
,
1516
1519
.
14.
W.
Mächtle
and
L.
Börger
,
Analytical Ultracentrifugation of Polymers and Nanoparticles
,
Springer
(
2006
).
15.
Lousse
,
V.
, and
Fan
,
S.
, (
2006
)
Waveguides in inverted opals photonic crystals
,
Opt. Express
14
,
866
878
.
16.
Wohlleben
,
W.
,
Bartels
,
F.
,
Boyle
,
M.
, and
Leyrer
,
R. J.
(submitted to Langmuir 2007)
Covalent and physical crosslinking of photonic crystals with tenfold enhanced chemo-mechanical stability
.
This content is only available via PDF.
You do not currently have access to this content.