High specific strength, low density and excellent corrosion resistance are three of the outstanding properties associated with titanium. Because of these properties, titanium has found a wide range of application.

Because of their low density and high absorbance of kinetic energy cellular structures are increasingly finding application. Up to now especially foaming of complex devices shows the limitations of conventional foaming processes.

Rapid manufacturing is used to build up individual objects for special applications. Because of the unique therapeutic demands individual patients, prostheses optimized to the requirements of the patient should be used to replace arthritic human joints.

For a long survivability of the implants, it has been suggested that they be adapted macroscopically to the elasticity of human bone. To enable the manufacture of such prostheses, three innovative technologies have to be combined. In a laser cladding process a massive titanium structure will be built up to create a scaffold which is filled with titanium foam induced by laser beam. To foam the titanium by laser beam a foaming agent has to be added to the titanium powder. With the combination of laser cladding and laser-induced foaming in a rapid prototyping process, the goal of this work is to allow the rapid manufacturing of individual prostheses with adapted elasticity.

1.
Wirtz
,
J.
(
1994
)
Titan ein Werkstoff der modernen Prothetik
,
Quintessenz
, vol.
45
, pp.
731
739
2.
Brehme
,
J.
,
Eisenbarth
,
E.
,
Biehl
,
V.
(
2000
)
Metalle und mechanische Oberflächenmodifikatio-nen
,
Biomaterialien
, vol.
1
(
1
)
3.
Krekeler
,
G.
,
Kappert
,
H.F.
,
Schilli
,
W.
(
1985
)
Scanning electron microscopic study of the reaction of human bone to a titanium implant
,
Oral Surg.
, vol.
14
, p.
447
4.
Thull
,
R.
(
2000
)
Biokompatibilitätsbestimmende Eigen-schaften der Grenzfläche
,
Biomaterialien
, vol.
1
(
1
)
5.
Biehl
,
V.
,
Breme
,
J.
,
Schulte
,
W.
,
d’Hoedt
,
B.
,
Donath
,
K.
(
1996
)
Isoelastische dentale Implantate aus Titanwerkstoffen – in-vivo und in-vitro Untersuchungen
,
Werkstoffwoche 1996; Symposium 4
,
Stuttgart, Germany
6.
Helsen
,
J.A.
,
Breme
,
H.J.
(
1998
)
Metals as Biomaterials, Wiley series in biomaterials science and engineering
,
John Wiley & Sons Ltd.
,
England
7.
Baumgartner
,
F.
,
Duarte
,
I.
,
Banhart
,
J.
(
2000
)
Adv. Eng. Mat.
,
168
174
,
2
8.
Baumgartner
,
J.
,
Banhart
,
J.
,
Weber
,
M.
(
1997
)
Mater. Des.
,
217
220
,
18
9.
Banhart
,
J.
;
Baumeister
,
J.
;
Weber
,
M.
(
1996
)
Mat. Sci and Eng.
,
221
228
,
A205
10.
Lu
,
T.J.
,
Hess
,
A.
,
Ashby
,
J.
(
1999
)
Appl. Phys
,
7528
7538
,
85
11.
Simone
,
A.E.
,
Gibson
,
L.G.
(
1998
)
Acta Mater.
,
3109
3123
,
46
12.
Ip
,
S.W.
,
Wang
,
Y.
,
Toguri
,
J.M.
(
1999
)
Can. Metal. Q.
,
81
92
,
38
13.
Baumeister
,
J.
(
1990
) German Patent, DE 40 18 360
14.
Banhart
,
J.
(
1999
)
Europhys. News
,
17
,
30
15.
Centeno Sanchez
,
R.L.
,
Kennedy
,
A.R.
,
Wood
,
J.V.
(
2001
) Study of liquid-gas interactions during the foaming of compacted Al-TiH2 powders; in
Banhart
,
J.
,
Ashby
,
M.F.
;
Fleck
,
N.A.
(ed)
Cellular Metals and Metal Foaming Technology
;
MIT-Verlag
,
69
76
16.
Schwarze
,
D.
(
2005
)
Selective Laser Melting (SLM) eröffnet neue Perspektiven für die medizinische Implantologie
; MCP-Newsletter 11/2005
17.
Wilden
,
J.
,
Frank
,
H.
,
Theiler
,
C.
,
Seefeld
,
T.
,
Sepold
,
G.
(
2002
) Rapid Prototyping gerichtet erstarrter Titanaluminidstrukturen; 47. 23.-26. September,
Internationales Wissenschaftliches Kolloquium
,
Technische Universität Ilmenau
,
Germany
18.
Dunand
,
D. C.
(
2004
) Processing of Titanium Foams;
Advanced Engineering Materials
, No. 6/2004;
Weinheim
:
Wiley-VCH Verlag
19.
Degischer
,
H.-P.
,
Kriszt
,
B.
(
2002
)
Handbook of Cellular Metals; Production, Processing, Applications
;
Weinheim
:
Wiley-VCH Verlag
20.
Centeno Sanchez
,
R. L.
,
Kennedy
,
A. R.
,
Wood
,
J. V.
(
2001
) Study of liquid-gas interactions during the foaming of compacted Al-TiH2 powders; in
Banhart
,
J.
,
Ashby
,
M. F.
,
Fleck
,
N.A.
(ed)
Cellular Metals and Metal Foaming Technology
;
Bremen
:
MIT-Verlag
21.
Körner
,
C.
,
Thies
,
M.
,
Arnold
,
M.
, ET AL (
2001
) Modelling of metal foaming by in-situ gas formation in Banhart, J.,
Ashby
,
M. F.
,
Fleck
,
N.A.
(ed)
Cellular Metals and Metal Foaming Technology
;
Bremen
:
MIT-Verlag
22.
Rausch
,
G.
,
Hartwig
,
T.
(
2001
) Titanium and steel sponges prepared by powder metallurgy in Banhart, J.,
Ashby
,
M. F.
,
Fleck
,
N.A.
(ed)
Cellular Metals and Metal Foaming Technology
;
Bremen
:
MIT-Verlag
23.
Stanzick
,
H.
(
2003
)
Untersuchung der Bildung und des Kollapses von Metallschäumen
; Dissertation,
Universität Bremen, Fachbereich Produktionstechnik
,
Berlin, Germany
24.
Bram
,
M.
,
Stiller
,
C.
,
Buchkremer
,
H. P.
, ET AL (
1999
) Preparation and characterization of high-porosity titanium, stainless steel, and superalloy parts in Banhart, J.,
Ashby
,
M. F.
,
Fleck
,
N.A.
(ed)
Metal Foams and Porous Metal Structures
;
Bremen
,
MIT-Verlag
25.
Dunand
,
D. C.
(
2003
) Processing of titanium foams in Banhart, J.,
Fleck
,
N.A.
,
Mortensen
,
A.
(ed)
Cellular Metals: Manufacture, Properties, Applications
;
Berlin
:
MIT-Verlag
26.
Rausch
,
G.
,
Hartwig
,
T.
,
Weber
,
M.
, ET AL (
2000
) Herstellung und Eigenschaften von Titanschäumen in
Degischer
,
H.P.
(ed)
Materialwissenschaft und Werkstofftechnik
Vol.
31
; No.
6
/2000;
Weinheim
:
Wiley-VCH
This content is only available via PDF.
You do not currently have access to this content.