Ultrashort pulsed laser light facilitates multiphoton-excited photophysical and photochemical processes. High peak intensities confine reactions to the centre of the focal spot and allow direct laser writing of microstructures in three dimensions. We present two methods based on photosensitive polymer materials and high-resolution optical microscopy, which permit the fast and efficient generation of photonic crystals with bandgaps in the near and mid-infrared spectral region. Two-photon photopolymerization relies on the initiation of a polymerization reaction in the scanning laser focus and results in arbitrarily shaped microgratings of submicron-size structural elements. Femtosecond laser drilling in solid polymer blocks is based on microexplosions in the moving laser focus resulting in void channels with submicron diameters. Both techniques provide highly correlated structural arrangements, which allow for the observation and optimization of higher-order stop gaps.

1.
Denk
,
W.
,
Strickler
,
J.H.
, &
Webb
,
W.W.
(
1990
)
Two-photon laser scanning fluorescence microscopy
,
Science
248
,
73
76
.
2.
Parthenopoulos
,
D.A.
, &
Rentzepis
,
P.M.
(
1989
),
Three-dimensional optical storage memory
,
Science
245
,
843
845
.
3.
Maruo
,
S.
,
Nakamura
,
O.
, &
Kawata
,
S.
(
1997
)
Three-dimensional microfabrication with two-photon-absorbed photopolymerization
,
Opt. Lett.
22
,
132
134
.
4.
Sun
,
H.B.
, et al (
2000
)
Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption
,
Opt. Lett.
25
,
1110
1112
.
5.
Galajda
,
P.
, &
Ormos
,
P.
(
2001
)
Complex micromachines produced and driven by light
,
Appl. Phys. Lett.
78
,
249
251
.
6.
Cumpston
,
B.H.
, et al (
1999
)
Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication
,
Nature
398
,
51
54
.
7.
Kawata
,
S.
, et al (
2001
)
Finer features for functional microdevices
,
Nature
412
,
697
698
.
8.
Sun
,
H.B.
,
Matsuo
,
S.
, &
Misawa
,
H.
(
1999
)
Three-dimensional photonic crystal structures achieved with two-photon photopolymerization of resin
,
Appl. Phys. Lett.
74
,
786
788
.
9.
Sun
,
H.B.
, et al (
2001
)
Microcavities in polymeric photonic crystals
,
Appl. Phys. Lett.
79
,
1
3
.
10.
Straub
,
M.
, &
Gu
,
M.
(
2002
)
Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization
,
Opt. Lett.
27
,
1824
1826
.
11.
Sun
,
H.B.
,
Tanaka
,
T.
,
Takada
,
K.
, &
Kawata
,
S.
(
2001
)
Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes
,
Appl. Phys. Lett.
79
,
1411
1413
.
12.
Kaneko
,
K.
,
Sun
,
H.B.
,
Duan
,
X.M.
, &
Kawata
,
S.
(
2003
)
Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix
,
Appl. Phys. Lett.
83
,
1426
1429
.
13.
Serbin
,
J.
, et al (
2003
)
Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics
,
Opt. Lett
28
,
301
303
.
14.
Glezer
,
E.N.
,
Milosavljevic
,
M.
,
Huang
,
L.
,
Finlay
,
R.J.
,
Her
,
T.H.
,
Callan
,
J.P.
, &
Mazur
,
E.
(
1996
)
Three-dimensional optical storage inside transparent materials
,
Opt. Lett. 21
,
2023
2025
.
15.
Watanabe
,
W.
,
Toma
,
T.
,
Yamada
,
K.
,
Nishii
,
J.
,
Hayashi
,
K.I.
, &
Itoh
,
K.
(
2000
)
Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses
,
Opt. Lett.
25
,
1669
1671
.
16.
Yamasaki
,
K.
,
Juodkazis
,
S.
,
Watanabe
,
M.
,
Sun
,
H.B.
,
Matsuo
,
S.
, &
Misawa
,
H.
(
2000
)
Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films
,
Appl. Phys. Lett.
76
,
1000
1002
.
17.
Day
,
D.
, &
Gu
,
M.
(
2002
)
Formation of voids in a doped polymethylmethacylate polymer
,
Appl. Phys. Lett.
80
,
2404
2406
.
18.
Ventura
,
M.J.
,
Straub
,
M.
, &
Gu
,
M.
(
2003
)
Void channel microstructures as an efficient way to infrared photonic crystals
,
Appl. Phys. Lett.
82
,
1649
1651
.
19.
Straub
,
M.
,
Ventura
,
M.
, &
Gu
,
M.
(
2003
)
Multiple higher-order stop gaps in infrared polymer photonic crystals
,
Phys. Rev. Lett.
91
,
043901
4
.
20.
Sun
,
H.B.
,
Tanaka
,
T.
, &
Kawata
,
S.
(
2002
)
Three-dimensional focal spots related to two-photon excitation
,
Appl. Phys. Lett.
80
,
3673
3675
.
21.
Biwas
,
R.
,
Chan
,
C.T.
,
Sigalas
,
M.
,
Soukoulis
,
C.M.
, &
Ho
,
K.M.
(
1996
) Photonic Band Gap Materials, in
C.M.
Soukoulis
(ed),
Photonic Band Gap Materials
,
Kluwer Academic Publishers, NATO ASI series
, Series E: Applied Sciences - Vol.
315
,
23
40
.
This content is only available via PDF.
You do not currently have access to this content.