Fabrication of three-dimensional shapes with engineering materials is of considerable interest for last three decades. Aerospace companies such as United Technologies in late Nineteen Seventies reported Nickel Super Alloys. In eighties rapid prototyping with photopolymer and laser sintering of polymer and metals started an industry. During the past decade several laboratories all over the world has made tremendous progress in producing parts directly from Computer Aided Design (CAD). Even tool steels are now possible using Closed Loop Direct Materials Deposition (DMD) technique. H13 tool steel is one of the difficult alloys for deposition due to residual stress accumulation from martensitic transformation. However, it is the material of choice for the die and tool industry. DMD offers Copper chill blocks and water-cooling channels as the integral part of the tool. This can reduce cycle time by 10-50 % for some injection molding dies. Difficult components can be repaired relatively easily. Presently the DMD technology and its derivatives are commercialized by many start-up Companies such as POM Group Inc. at Auburn Hills, Michigan. Using the closed loop Direct Metal Deposition, POM group is involved in fabrication, reconfiguration and restoration of tools, dies and components. Bi-Metallic Forging Tools fabricated by DMD exhibited 3 times the life improvement. This technology has the potential for remote manufacturing and may be useful for repairing and reconfiguration of components in the ship with the data electronically transferred from shore.

This process is amenable to produce both macro and microstructure to a designed specification. Using DMD in conjunction with Homogenization design Method and heterogeneous CAD, one can produce components with predetermined performance such as negative co-efficient of thermal expansion, by synthesis of designed microstructure. This paper briefly reviews the past evolution and state of the art of DMD and describes present and future applications.

1.
Choi
,
D.-S.
(KIMM);
Lee
,
S.H.
;
Shin
,
B.S.
;
Whang
,
K.H.
;
Song
,
Y.A.
;
Park
,
S.H.
;
Jee
,
H.S.
Development of a direct metal freeform fabrication technique using CO2 laser welding and milling technology
”, Source:
Journal of Materials Processing Technology
, v
113
, n
1-3
, Jun 15,
2001
, p
273
279
2.
Cormier
,
Denis
(North Carolina State Univ);
Ta ylor
,
James
Process for solvent welded rapid prototype tooling
”, Source:
Robotics and Computer-Integrated Manufacturing
, v
17
, n
1
, Feb,
2001
, p
151
157
3.
Kwak
,
Yong-Min
(Tufts Univ);
Doumanidis
,
Charalabos
Solid freeform fabrication by GMA welding: Geometry modeling, adaptation and control
”, Source:
American Society of Mechanical Engineers, Manufacturing Engineering Division, MED
, v
10
,
1999
, p
49
56
4.
Hanninen
,
Jouni
(EOS Finland) “
Direct metal laser sintering
”, Source:
Advanced Materials and Processes
, v
160
, n
5
, May,
2002
, p
33
36
5.
Bourell
,
David L.
(Mechanical Engineering Department, Texas Materials Institute, University of Texas at Austin);
Wohlert
,
Martin
;
Harlan
,
Nicole
Applications of powder sintering to selective laser sintering
”, Source:
Microstructure Modeling and Prediction During Thermomechanical Processing
,
2001
, p
201
210
6.
Liew
,
Loy Seng
(The Res. Center for Superplasticity, Ibaraki University);
Maekawa
,
Katsuhiro
;
Iida
,
Shinichi
;
Suzuki
,
Tomoya
The application of the brazing process in Selective Laser Sintering fabricated parts
”, Source:
JSME International Journal, Series A: Solid Mechanics and Material Engineering
, v
46
, n
3
, July,
2003
, p
506
511
.
7.
Lakshminarayan
,
U.
(DTM Corp);
McAlea
,
K.
;
Girouard
,
D.
;
Booth
,
R.
Manufacture of iron-copper composite parts using selective laser sintering (SLSTM
)” Source:
Advances in Powder Metallurgy and Particulate Materials
, v
3
,
1995
, p
13/77
13/85
8.
Kathuria
,
Y.P.
(Laser X Co. Ltd.) “
Laser assisted rapid prototyping in Japan
”, Source:
Proceedings of SPIE - The International Society for Optical Engineering
, v
4644
,
2002
, p
400
406
9.
Boivie
,
Klas
(Woxencentrum, Department of Production Engineering, The Royal Institute of Technology) “
Investigation of size range composed powder for SLS based liquid phase sintered tooling
”, Source:
Technical Paper -Society of Manufacturing Engineers. CM, n CM02-218
,
2002
, p i+;
1
10
10.
Won
,
Jey
(State Univ of New Jersey);
DeLaurentis
,
Kathryn
;
Mavroidis
,
Constantinos
Rapid prototyping of robotic systems
”, Source:
Proceedings - IEEE International Conference on Robotics and Automation, v
4
,
2000
, p
3077
3082
11.
Levy
,
G.N.
(Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, University of Palermo);
Schindel
,
R.
;
Schleiss
,
P.
;
Micari
,
F.
;
Fratini
,
L.
On the use of SLS tools in sheet metal stamping
”, Source:
CIRP Annals - Manufacturing Technology
, v
52
, n
1
,
2003
, p
249
252
12.
Egan
,
Eric
(Carnegie Mellon Univ);
Amon
,
Cristina H.
Cooling strategies for embedded electronic components of wearable computers fabricated by shape deposition manufacturing
”, Source:
Thermomechanical Phenomena in Electronic Systems-Proceedings of the Intersociety Conference
,
1996
, p
13
20
13.
Hartmann
,
K.
(Carnegie Mellon Univ);
Krishnan
,
R.
;
Merz
,
R.
;
Neplotnik
,
G.
;
Prinz
,
F.B.
;
Schultz
,
L.
;
Terk
,
M.
;
Weiss
,
L.E.
Robot-assisted shape deposition manufacturing
”, Source:
Proceedings - IEEE International Conference on Robotics and Automation
, n pt 4,
1994
, p
2890
2895
14.
Amon
,
C.H.
(Stanford Univ);
Beuth
,
J.L.
;
Weiss
,
L.E.
;
Merz
,
R.
;
Prinz
,
F.B.
Shape deposition manufacturing with microcasting: Processing, thermal and mechanical issues
”, Source:
Journal of Manufacturing Science and Engineering, Transactions of the ASME
, v
120
, n
3
, Aug,
1998
, p
656
665
15.
Cooper
,
A.G.
(Stanford Univ);
Kang
,
S.
;
Kietzman
,
J.W.
;
Prinz
,
F.B.
;
Lombardi
,
J.L.
;
Weiss
,
L.E.
Automated fabrication of complex molded parts using mold shape deposition manufacturing
”, Source:
Materials and Design
, v
20
, n
2-3
, Jun,
1999
, p
83
89
16.
Griffith
,
Michelle L.
(Sandia Natl Lab);
Keicher
,
David L.
;
Romero
,
J. Tony
;
Smugeresky
,
John E.
;
Atwood
,
Clint L.
;
Harwell
,
Lane D.
;
Greene
,
Don L.
Laser Engineered Net Shaping (LENSTM) for the fabrication of metallic components
”, Source:
American Society of Mechanical Engineers, Materials Division (Publication) MD
, v
74
, Advanced Materials: Development, Characterization Processing, and Mechanical Behavior,
1996
, p
175
176
17.
Liu
,
Weiping
(Dept. of Mat. Sci. and Engineering, Lehigh University);
DuPont
,
J.N.
Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping
”, Source:
Scripta Materialia
, v
48
, n
9
, May,
2003
, p
1337
1342
18.
Grylls
,
Richard
(Optomec Inc.) “
Laser engineered net shapes
”, Source:
Advanced Materials and Processes
, v
161
, n
1
, January,
2003
, p
45
46
+86
19.
Noecker
,
F.F.
II
(Department of Mat. Science and Eng., Lehigh University);
DuPont
,
J.N.
Functionally graded copper - Steel using LENS [trademark] process
”, Source:
Proceedings of the TMS Fall Meeting
,
2002
, p
139
147
20.
Banerjee
,
R.
(Department of Materials Science, Ohio State University);
Collins
,
P.C.
;
Bhattacharyya
,
D.
;
Banerjee
,
S.
;
Fraser
,
H.L.
Microstructural evolution in laser deposited compositionally graded α/β titanium-vanadium alloys
”, Source:
Acta Materialia
, v
51
, n
11
, Jun 27,
2003
, p
3277
3292
21.
Milewski
,
John O.
(Los Alamos Natl Lab);
Thoma
,
Dan J.
;
Fonseca
,
Joe C.
;
Lewis
,
Gary K.
Development of a near net shape processing method for rhenium using Directed Light Fabrication
”, Source:
Materials and Manufacturing Processes
, v
13
, n
5
, Sep,
1998
, p
719
730
22.
Mah
,
Richard
(Los Alamos Natl Lab) “
Directed light fabrication
”, Source:
Advanced Materials & Processes
, v
151
, n
3
, Mar,
1997
, p
31
33
23.
Milewski
,
John O.
(Los Alamos Natl Lab);
Thoma
,
Dan J.
;
Fonseca
,
Joe C.
;
Lewis
,
Gary K.
Development of a near net shape processing method for rhenium using Directed Light Fabrication
”, Source:
Materials and Manufacturing Processes
, v
13
, n
5
, Sep, 1998, p
719
730
24.
Mazumder
,
J.
(Univ of Michigan);
Choi
,
J.
;
Nagarathnam
,
K.
;
Koch
,
J.
;
Hetzner
,
D.
Direct metal deposition of H13 tool steel for 3-D components
”, Source:
JOM
, v
49
, n
5
, May,
1997
, p
55
60
25.
Mazumder
,
Jyoti
(Ctr. Laser-Aided Intelligent Mfg., University of Michigan);
Dutta
,
D.
;
Ghosh
,
A.
;
Kikuchi
,
N.
Designed materials: What and how
”, Source:
Proceedings of SPIE - The International Society for Optical Engineering
, v
4831
,
2002
, p
505
516
26.
Shin
,
Ki-Hoon
(Digital Multimedia R and D Center, Daewoo Electronics Corporation);
Natu
,
Harshad
;
Dutta
,
Debasish
;
Mazumder
,
Jyotirmoy
A method for the design and fabrication of heterogeneous objects
”, Source:
Materials and Design
, v
24
, n
5
, August,
2003
, p
339
353
28.
Koch
,
J.
&
Mazumder
,
J.
, “
Rapid prototyping by laser cladding
” in
Proceedings of ICALEO ’93
(edited by
P.
Denney
,
I.
Miyamoto
, and
B. L.
Mordike
) Vol.
77
, p.
556
565
,
1993
.
29.
Mazumder
,
J.
,
Schifferer
,
A.
&
Choi
,
J.
, “
Direct materials deposition: designed macro and microstructure
Mat Res Innovat
Vol.
3
, pp.
118
131
, 1999.
30.
Keicher
,
D. M.
&
Smugeresky
,
J. E.
,
Journal of Metals
,
1997
.
31.
Milewski
,
J. O.
,
Lewis
,
G. K.
,
Thoma
,
D. J.
, et al, “
Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition
J Mater Process Tech
,
75
(
1-3
), pp.
165
172
,
1998
.
32.
Hammeke
,
A.W.
,
Quantum Laser Corporation. U. S.
Patent # 4724299,
1988
.
33.
Mazumder
,
J.
and
Voekel
,
D. U.S.
Patent # 5,446,549 (
1995
).
34.
Koch
,
J. L.
and
Mazumder
,
J.
, “
Apparatus and methods for monitoring and controlling multi-layer laser cladding
,” U.S. Patent No. 6,122,564, September 2000.
35.
Mazumder
,
J
,
Dutta
,
D.
,
Kikuchi
,
N.
, &
Ghosh
,
A.
Optics and Lasers in Engineering
,” Vol.
34
, (
2000
) pp
397
414
.
36.
Mazumder
,
J
,
T.
Skszek
,
J.
Kelly
,
J.
Choi
.: U.S. Patent #6410105 “
Production of overhang, undercut, and cavity structures using direct metal deposition
”, May 15,
2000
37.
Bendsoe
,
M. P.
and
Kikuchi
,
N.
,
Generating optimal topologies in structural design using a homogenizaton method
,
Comput. Methods Appl. Mech. Engrg
, Vol,.
71
, pp.
197
224
,
1988
This content is only available via PDF.
You do not currently have access to this content.