We have built a mode-locked Nd:YVO4 laser with a very long resonator which produces an average power of 50-W in 13-ps pulses at 1064nm and was designed for applications in micro-machining; the deposition of optical thin films; and the growth of nano-clusters in the laser-ablated plumes. By operating the laser at very low mode-locking repetition rates (1.5 MHz, 2.6 MHz, and 4.1 MHz), high pulse power is available in a near diffraction limited beam allowing focussed intensities to exceed 1012 W/cm2 and permitting efficient evaporation of difficult materials such as Si. The high power also allows conversion into the 2nd harmonic at 532nm with an efficiency exceeding 80%. Measurements of the ablation mass in experiments with metals show a 30-100 times increase in the ablated rate compared to the conventional low-repetition-rate ns-range lasers.

1.
Gamaly
,
E. G.
,
Rode
,
A. V.
,
Luther-Davies
B.
(
1999
)
Ultrafast Ablation with High-Pulse-Rate Lasers. Part I: Theoretical Considerations
,
J. Appl. Phys.
85
,
4213
.
2.
Rode
,
A.V.
,
Luther-Davies
B.
, and
Gamaly
E.G.
, (
1999
)
Ultrafast Ablation with High-Pulse-Rate Lasers. Part II: Experiments on Laser Deposition of Amorphous Carbon Films
,
J. Appl. Physics
,
85
,
4222
.
3.
Kolev
,
V. Z.
,
Lederer
,
M. J.
,
Luther-Davies
,
B.
,
Rode
A. V.
(
2003
)
Passive mode-locking of a Nd:YVO4laser with an extra-long optical resonator
,
Optics Letters
,
28
,
1275
1277
.
4.
Herriott
,
D.
,
Kogelnik
,
H.
,
Kompfner
,
R.
(
1964
)
Off-axis path in spherical mirror interferometers
,
Appl. Opt.
3
,
523
526
.
5.
Keller
,
U.
,
Miller
,
D. A. B.
,
Boyd
,
G. D.
,
Chiu
,
T. H.
,
Ferguson
,
J. F.
,
Asom
,
M. T.
, (
1992
)
Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber
,
Opt. Lett.
17
,
505
507
.
6.
Lederer
,
M. J.
,
Kolev
,
V.
,
Luther-Davies
,
B.
,
Tan
,
H. H.
, and
Jagadish
,
C.
(
2001
)
Ion-implanted InGaAs single quantum well semiconductor saturable absorber mirrors for passive mode-locking
,
J. Phys. D: Appl. Phys.
34
,
2455
2464
.
7.
Bauerle
,
D.
(
2000
)
Laser Processing and Chemistry
,
Springer
,
Berlin
,
788
pp; and references therein.
8.
Chrisey
,
D. B.
,
Hubler
G. K.
, (
1994
)
Pulsed Laser Deposition of Thin Films
,
Wiley
,
New York
,
613
pp; and references therein.
9.
Perry
,
M. D.
,
Stuart
,
B. C.
,
Banks
,
P. S.
,
Feit
,
M. D.
,
Yanovsky
V.
,
Rubenchik
,
A. M.
(
1999
)
Ultrashort-pulse laser machining of dielectric materials
,
J. Appl. Phys.
85
,
6803
6810
.
10.
Stuart
,
B. C.
,
Feit
,
M. D.
,
Herman
,
S.
,
Rubenchik
,
A. M.
,
Shore
,
B. W.
,
Perry
M. D.
(
1996
)
Optical ablation by high-power short-pulse lasers
,
J. Opt. Soc. Am. B
13
,
459
468
.
11.
P. P.
Pronko
,
P. A.
VanRompay
,
C.
Horvath
,
F.
Loesel
,
T.
Juhasz
,
X.
Liu
, and
G.
Mourou
(
1998
)
Avalanche ionisation and dielectric breakdown in silicon with ultrafast laser pulses
,
Phys. Rev. B
,
58
,
2387
2390
.
12.
Bonse
,
J.
,
Baudach
,
S.
,
Kruger
,
J.
,
Kautek
,
W.
,
Lenzner
M.
, (
2002
)
Femtosecond laser ablation of silicon - modification thresholds and morphology
,
Appl. Phys. A
,
74
,
19
25
.
13.
Hashida
,
M.
,
Semerok
,
A. F.
,
Gobert
,
O.
,
Petite
,
G.
,
Izawa
,
Y.
,
Wagner
,
J. F.
(
2002
)
Ablation threshold dependence on pulse duration for copper
,
Appl. Surf. Sci.
197-198
,
862
867
.
14.
Chichkov
,
B. N.
,
Momma
,
C.
,
Nolte
,
S.
,
von Alvensleben
,
F.
,
Tünnermann
,
A.
(
1996
)
Femtosecond, picosecond, and nanosecond laser ablation of solids
,
Appl. Phys. A
,
63
,
109
115
.
15.
Hirayama
,
Y.
,
Obara
,
M.
(
2002
)
Heat effects of metals ablated with femtosecond laser pulses
,
Appl. Surf. Sci.
197-198
,
741
745
.
16.
Gamaly
,
E. G.
,
Rode
,
A. V.
,
Luther-Davies
,
B.
,
Tikhonchuk
V. T.
(
2002
)
Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics Physics of Plasmas
,
9
,
949
957
.
This content is only available via PDF.
You do not currently have access to this content.