Industrial laser processing of carbon fibres is very promising for large-volume production of CFRP lightweight parts. Yet reduced quality and the large process energy needed for processing carbon requiring high average powers actually limits the use of laser technology.

However, choosing appropriate laser parameters and processing strategies the thermal damage caused by the laser radiation can be utilized to realize a very efficient processing of CFRP: In the first step only small kerfs are created by sublimating the carbon material. By producing two close kerfs fibre fragments are created which can be removed in a second step by just sublimating the matrix material. The detached fiber fragments are either removed by the ablating material pressure or by an additional process gas jet.

The present paper compares the required absorbed energy densities for the different processing strategies of CFRP. The theoretical considerations are compared with experimental results achieved with ns-drilling of blind holes.

1.
Lau
,
W. S.
;
Lee
,
W. B.
;
Pang
,
S. Q.
,
Pulsed Nd: YAG Laser Cutting of Carbon Fibre Composite Materials
.
CIRP Annals - Manufacturing Technology
1990
,
39
(
1
),
179
182
.
2.
Sheng
,
C.
;
Chryssolouris
,
G.
:
Theoretical Model of Laser Grooving for Composite Materials
.
Journal of Composite Materials
,
29
(
1995
),
96
112
3.
Pan
,
C. T.
;
Hocheng
,
H.
,
Prediction of Laser-Induced Thermal Damage of Fiber Mat and Fiber MatUD Reinforced Polymers
.
Journal of Materials Engineering and Performance
1998
,
7
(
6
),
751
756
.
4.
Mathew
,
J.
;
Goswami
,
G. L.
;
Ramakrishnan
,
N.
;
Naik
,
N. K.
,
Parametric studies on pulsed Nd:YAG laser cutting of carbon fibre reinforced plastic composites
.
Journal of Materials Processing Technology
1999
,
89–90
(
0
),
198
203
.
5.
Cenna
A.A.
,
Mathew
P.
;
Evaluation of cut quality of fibre-reinforced plastic – a review
;
Int. J. Mach. Tools Manufact.
, Vol.
37
(
6
),
723
736
(
1997
)
6.
Herzog
D.
,
Jaeschke
P.
,
Meier
O.
and
Haferkamp
H.
,
Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP
,
International Journal of Machine Tools & Manufacture
48
(
2008
), pp.
1464
1473
7.
French
,
P. W.
;
Naeem
,
M.
;
Clowes
,
J.
;
Sharp
,
M. C.
In Fibre Laser Material Processing of Aerospace Composites
,
Lasers in Manufacturing
,
Munich
,
2009
.
8.
Wolynski
,
A.
;
Haloui
,
H.
;
Mucha
,
P.
;
Gleiter
,
A.
;
French
,
P.
;
Weber
,
R.
;
Graf
,
T.
,
Effect of Process Strategies on Thermal Load during CFRP Manufacturing using Picosecond Laser Pulses
.
Proc ICALEO 2010
,
Los Angeles
,
2010
.
9.
Weber
R.
,
Hafner
M.
,
Michalowksi
A.
,
Graf
T.
;
Minimum damage in CFRP laser processing
,
Physics Proceedia
12
(
2
),
2011
, Pages
302
310
10.
Emmelmann
,
C.
;
Petersen
,
M.
;
Goeke
,
A.
;
Canisius
,
M.
,
Analysis of Laser Ablation of CFRP by Ultra-Short Laser Pulses with Short Wavelength
.
Physics Procedia
2011
,
12
, Part A (0),
565
571
.
11.
Negarestani
,
R.
;
Li
,
L.
;
Sezer
,
H. K.
;
Whitehead
,
D.
;
Methven
,
J.
,
Nano-second pulsed DPSS Nd:YAG laser cutting of CFRP composites with mixed reactive and inert gases
.
Int J Adv Manuf Technol
2010
,
49
(
5-8
),
553
566
.
12.
Klotzbach
A.
,
Hauser
M.
,
Beyer
E.
,
Laser Cutting of Carbon Fiber Reinforced Polymers using Highly Brilliant Laser Beam Sources
,
Physics Procedia
,
12
, Part A,
572
577
,
2011
13.
Weber
,
R.
;
Freitag
,
C.
;
Kononenko
,
T. V.
;
Hafner
,
M.
;
Onuseit
,
V.
;
Berger
,
P.
;
Graf
,
T.
,
Short-pulse Laser Processing of CFRP
.
Physics Procedia
2012
,
39
(
0
),
137
146
.
14.
Freitag
,
C.
;
Onuseit
,
V.
;
Weber
,
R.
;
Graf
,
T.
,
High-speed Observation of the Heat Flow in CFRP During Laser Processing
.
Physics Procedia
,
39
(
2012
),
171
178
.
This content is only available via PDF.
You do not currently have access to this content.