Hard chrome is an electroplating process that increases the durability, hardness, wear, and corrosion resistance of metal components in various machinery and equipment. However, the method is being banned due to harmful health and environmental effects. In this paper, high-speed laser cladding was employed to develop alternative coatings for hard chrome. The fabricated coatings, relatively low in thickness (∼0.2 mm), were based on self-fluxing NiBSi alloy reinforced with small (∼25–50 μm) spherical and angular fused tungsten carbides (WC/W2C) on moderately hard (∼450 HV) quenched and tempered steel. Obtained coatings were characterized by optical microscopy, scanning electron microscopy, x-ray diffraction, and optical surface profilometry. Mechanical and wear properties were tested by the Vickers microhardness method and low-stress three-body dry-sand rubber wheel abrasion test. The results demonstrated that coatings reinforced with spherical WC/W2C with bulk hardness up to ∼1000 HV1 exhibited wear resistance better than hard-chrome plated coating. Better wear resistance was attributed to the high-volume fraction (∼43 vol. %) of very hard (∼3100 HV0.1) and high fracture toughness spherical carbide reinforcements. Consequently, the developed coating is a good alternative to hard chrome in a low-stress three-body abrasion tribosystem.

1.
R. G. A.
Wills
and
F. C.
Walsh
, “
Electroplating for protection against wear
,” in
Surface Coatings for Protection Against Wear
, edited by
B. G.
Mellor
(
Woodhead Publishing Limited
,
Cambridge
,
2006
), pp.
226
248
.
2.
ASM International
, see https://www.asminternational.org/tss/chrome-plating-will-be-banned-in-all-new-cars-starting-2024/ for “Chrome Plating Will be Banned in All New Cars Starting 2024” (
2023
) (accessed August 11, 2023).
3.
E. Union
, “
COMMISSION REGULATION (EU) No 348/2013 of 17 April 2013 amending Annex XIV to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration Evaluation, Authorisation and Restriction of Chemicals (REACH)
,”
Off. J. Eur. Union
56
,
1
5
(
2013
).
4.
T.
Schopphoven
,
A.
Gasser
,
K.
Wissenbach
, and
R.
Poprawe
, “
Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying
,”
J. Laser Appl.
28
,
022501-1
022501-9
(
2016
).
5.
T.
Seefeld
,
C.
Theiler
, and
G.
Sepold
, “
Laser beam cladding at high processing speed
,” in
ICALEO 2001 Congress Proceedings, 20th International Congress on Applications of Lasers & Electro-Optics
,
Jacksonville, FL, USA,
15–18 October 2001
(Laser Institute of America, Orlando, FL,
2001
).
6.
K.
Partes
,
T.
Seefeld
,
G.
Sepold
, and
F.
Vollertsen
, “
High efficiency laser cladding at elevating processing speeds
,” in
ICALEO 2005 Congress Proceedings, 24th International Congress on Applications of Lasers & Electro-Optics
,
Miami, FL, USA
,
31 October–3 November 2005
(Laser Institute of America, Orlando, FL,
2005
).
7.
S.
Vogt
,
M.
Göbel
, and
E.
Fu
, “
Perspectives for conventional coating processes using high-speed laser cladding
,”
J. Manuf. Sci. E
144
,
044501-1
044501-7
(
2022
).
8.
A.
Wank
,
C.
Schmengler
,
A.
Hitzek
,
A.
Krause
, and
M.
Mülln
, “
Progress in laser additive manufacturing equipment and applications
,”
J. Jpn. Laser Process. Soc.
29
,
1
6
(
2022
).
9.
J.
Tuominen
,
J.
Kiviö
,
C.
Balusson
,
L.
Raami
,
J.
Vihinen
, and
P.
Peura
, “
High-speed laser cladding of chromium carbide reinforced Ni-based coatings
,”
Weld. World
67
,
2175
2186
(
2023
).
10.
Y.
Wang
,
K.
Hao
,
L.
Zhao
,
Y.
Han
,
L.
Xu
, and
W.
Ren
, “
Investigation of GH3625 alloy: Contrasting microstructures, mechanical properties, and corrosion performance via conventional and extreme high speed laser material deposition,”
,”
J. Alloys Compd.
968
,
172060
(
2023
).
11.
K.
Wang
,
D.
Du
,
G.
Liu
,
Z.
Pu
,
B.
Chang
, and
J.
Ju
, “
A study on the additive manufacturing of a high chromium nickel-based superalloy by extreme high-speed metal deposition
,”
Opt. Laser Technol.
133
,
106504
(
2021
).
12.
Z.
Wu
,
M.
Qian
,
M.
Brandt
, and
N.
Matthews
, “
Ultra-high-speed laser cladding of Stellite® 6 alloy on mild steel
,”
JOM
72
,
4632
4638
(
2020
).
13.
Z.
Chong
,
Y.
Sun
,
W.
Cheng
,
C.
Han
,
L.
Huang
,
C.
Su
, and
L.
Jiang
, “
Enhanced wear and corrosion resistances of AlCoCrFeNi high-entropy alloy coatings via high-speed laser cladding
,”
Mater. Today Commun.
33
,
104417
(
2022
).
14.
C.
Du
,
L.
Hu
,
X.
Ren
,
Y.
Li
,
F.
Zhang
,
P.
Liu
, and
Y.
Li
, “
Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding
,”
Surf. Coat. Technol.
424
,
127617
(
2021
).
15.
C.
Lampa
and
I.
Smirnov
, “
High speed laser cladding of an iron based alloy developed for hard chrome replacement
,”
J. Laser Appl.
31
,
022511
(
2019
).
16.
W.
Yuan
,
R.
Li
,
Z.
Chen
,
J.
Gu
, and
Y.
Tian
, “
A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings
,”
Surf. Coat. Technol.
405
,
126582
(
2021
).
17.
Z.
Yong
,
L.
Chang
,
S.
Jiang
,
D.
Xie
,
F.
Xing
,
H.
Shen
,
L.
Shen
, and
Z.
Tian
, “
Parameter optimization of T800 coating fabricated by EHLA based on response surface methodology
,”
Opt. Laser Technol.
158
,
108837
(
2023
).
18.
J.
Yang
,
B.
Bai
,
H.
Ke
,
Z.
Cui
,
Z.
Liu
,
Z.
Zhou
,
H.
Xu
,
J.
Xiao
,
Q.
Liu
, and
H.
Li
, “
Effect of metallurgical behavior on microstructure and properties of FeCrMoMn coatings prepared by high-speed laser cladding
,”
Opt. Laser Technol.
144
,
107431
(
2021
).
19.
Q.
Yan
,
K.
Yang
,
Z. D.
Wang
,
M. Z.
Chen
,
G. F.
Sun
, and
Z. H.
Ni
, “
Surface roughness optimization and high-temperature wear performance of H13 coating fabricated by extreme high-speed laser cladding
,”
Opt. Laser Technol.
149
,
107823
(
2022
).
20.
Q.
Xiao
,
J.
Xia
,
X.
Gao
,
W.
Yang
,
D.
Chen
,
H.
Ding
, and
Y.
Wang
, “
Conventional laser cladding and ultra-high-speed laser cladding alloy coatings for wheel materials
,”
Coatings
13
,
949
(
2023
).
21.
X.
Xu
,
H.
Lu
,
J.
Qiu
,
K.
Luo
,
Y.
Su
,
F.
Xing
, and
J.
Lu
, “
High-speed-rate direct energy deposition of Fe-based stainless steel: Process optimization, microstructural features, corrosion and wear resistance
,”
J. Manuf. Process.
75
,
243
258
(
2022
).
22.
N.
Zhang
,
Y.
Xu
,
M.
Wang
,
X.
Hou
,
B.
Du
,
X.
Ge
,
H.
Shi
, and
X.
Xie
, “
M2 coating prepared by ultra-high speed laser cladding: Microstructure and interfacial residual stress
,”
Mater. Today Commun.
35
,
105638
(
2023
).
23.
R.
Li
,
W.
Yuan
,
H.
Yue
, and
Y.
Zhu
, “
Study on microstructure and properties of Fe-based amorphous composite coating by high-speed laser cladding
,”
Opt. Laser Technol.
146
,
107574
(
2021
).
24.
L.
Meng
,
B.
Zhu
,
X.
Liu
, and
X.
Zeng
, “
Comparison on the Ni60 coatings deposited by extreme-high-speed and conventional laser-induction hybrid cladding technologies: Forming features, microstructure and wear behaviors
,”
Metall. Mater. Trans. A
54
,
3118
3133
(
2023
).
25.
European Commission
, “
Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions on the 2017 list of Critical Raw Materials for the EU, Brussels
,
1
8
(
2017
), Document No. 52017DC0490.
26.
R. C.
Gassmann
, “
Laser cladding with (WC + W2C)/Co-Cr-C and (WC + W2C)/Ni-B-Si composites for enhanced abrasive wear resistance,”
Mater. Sci. Technol.
12
,
691
696
(
1996
).
27.
G.
Fischer
,
T.
Wolfe
, and
K.
Meszaros
, “
The effects of carbide characteristics on the performance of tungsten carbide-based composite overlays, deposited by plasma-transferred arc welding
,”
J. Therm. Spray Technol.
22
,
764
771
(
2013
).
28.
K.
Van Acker
,
D.
Vanhoyweghen
,
R.
Persoons
, and
J.
Vangrunderbeek
, “
Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings
,”
Wear
258
,
194
202
(
2005
).
29.
P.
Kivikytö-Reponen
, Correlation of material characteristics and wear of powder metallurgical metal matrix composites,” Doctoral dissertation,
Helsinki University of Technology
,
Finland
,
2006
.
30.
A.
Wank
,
C.
Schmengler
,
D.
Pehl
,
A.
Krause
, and
S.
Barteck
, “
Influence of carbide feedstock on properties of protective laser claddings for grey cast iron brake rotors
,” in
Proceedings of EuroBrake
, Barcelona, Spain,
12–14th September 2023 (Sociedad de Técnicos de Automoción, Barcelona
,
2023
).
31.
A.
Wank
,
C.
Schmengler
,
A.
Krause
,
K.
Müller-Roden
, and
T.
Wessler
, “
Environmentally friendly protective coatings for brake discs
,”
J. Therm. Spray Technol.
32
,
443
455
(
2023
).
32.
J.
Tuominen
,
M.
Hallaji
,
J.
Kiviö
, and
J.
Vihinen
, “
High-speed laser cladding: new developments for wear and corrosion protection
,” in
IOP Conference Series: Materials Science and Engineering, Volume 1296, NOLAMP – Nordic Laser Materials Processing Conference (19th NOLAMP 2023)
,
Turku, Finland,
22–24th August 2023 (IOP Publishing Ltd, Bristol
,
2023
).
33.
R. K.
Kumar
,
M.
Kamaraj
,
S.
Seetharamu
,
T.
Pramod
, and
P.
Sampathkumaran
, “
Effect of spray particle velocity on cavitation erosion resistance characteristics of HVOF and HVAF processed 86WC-10Co4Cr hydro turbine coatings
,”
J. Therm. Spray Technol.
25
,
1217
1230
(
2016
).
34.
A.
Luft
,
A.
Techel
,
S.
Nowotny
, and
S.
Reitzenstein
, “
Microstructures and dissolution of carbides occurring during the laser cladding of steel with tungsten carbide reinforced Ni- and Co-hard alloys
,”
Prakt. Metallogr.
32
,
235
247
(
1995
).
35.
S. D.
Guest
, “
Depositing Ni-WC wear resistant overlays with hot-wire assist technology
,”
Doctoral dissertation
,
University of Alberta
,
Canada
,
2014
.
36.
ASM Handbook
,
v3 Phase Diagrams
(
ASM International
,
Materials Park, OH
,
1993
).
37.
K. L.
Wang
,
Q. B.
Zhang
,
M. L.
Sun
, and
Y. M.
Zhu
, “
Effect of laser surface cladding of ceria on the wear and corrosion of nickel-based alloys
,”
Surf. Coat. Tech.
96
,
267
271
(
1997
).
38.
K. L.
Wang
,
Q. B.
Zhang
,
M. L.
Sun
,
X. G.
Wei
, and
Y. M.
Zhu
, “
Rare earth elements modification of laser-clad nickel-based alloy coatings
,”
Appl. Surf. Sci.
174
,
191
200
(
2001
).
39.
E.
Badish
and
M.
Roy
, “
Hardfacing for wear, erosion and abrasion
,” in
Surface Engineering for Enhanced Performance Against Wear
, edited by
M.
Roy
(
Springer, Vienna, Wien
,
2013
), pp.
149
191
.
40.
Y.
Dai
,
X.
Tan
,
Y.
Li
,
J.
Yang
, and
B.
Huang
, “
Influence of fabricating process on microstructure and properties of spheroidal cast tungsten carbide powder
,”
Trans. Nonferrous Met. Soc. China
15
,
270
274
(
2005
).
41.
A.
Techel
,
A.
Luft
,
A.
Müller
, and
S.
Nowotny
, “
Production of hard metal-like wear protection coatings by CO2 laser cladding
,”
Opt. Quantum Electron.
27
,
1313
1318
(
1995
).
42.
S.
Huang
,
W.
Samandi
, and
M.
Brandt
, “
Abrasive wear performance of laser clad WC/Ni layers
,”
Wear
256
,
1095
1105
(
2004
).
43.
C.
Just
,
E.
Badish
, and
J.
Wosik
, “
Influence of welding current on carbide/matrix interface properties in MMC
,”
J. Mater. Process. Tech.
210
,
408
414
(
2010
).
44.
M.
Bober
,
J.
Senkara
, and
H.
Li
, “
Comparative analysis of the phase interaction in plasma surfaced NiBSi overlays with IVB and VIB transition metal carbides
,”
Materials
14
,
6617
(
2021
).
45.
See https://inewsteel.com/product/S355-Alloy-Steel.html for information about S355 steel (accessed April 7, 2023).
46.
See https://www.round-bars.com/products/aisi-4140-steel/ for information about Q&T steel (accessed September 14, 2024).
47.
R.
Seger
,
Examensarbete Inom Maskinteknik
(
Höganäs
, Sweden
,
2013
).
48.
ASTMG65-04 (reapproved 2010)
,
Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus
(
ASTM International
, West Conshohocken, 2010).
49.
K. H.
Zum Kahr
,
Microstructure and Wear of Materials
(
Elsevier Science Publishers B.V
,
Amsterdam
,
1987
).
50.
E.
Seppälä
,
Hitsaajan Käsikirja 5
(
Impomet Oy
,
Tampere
,
2007
) (in Finnish).
51.
I. M.
Hutchings
,
Tribology: Friction and Wear of Engineering Materials
(
Arnold
,
London
,
1996
), pp.
133
197
.
You do not currently have access to this content.