The characteristic heat accumulation within a burst of ultrashort pulses enables the formation of new types of surface alloys. The melt dynamics during irradiation provide the opportunity to change the surface texture in a controlled manner. However, there is still very limited information available on the influence of the topography of solidified melts of these novel surface alloys on the tribological properties of the metal matrix composite (MMC) surface. In this study, the authors report on the use of a burst-mode solid-state laser with an emitting wavelength of 1064 nm and a pulse duration of 10 ps for the surface treatment of the MMC cemented tungsten carbide. This treatment and texturing form a novel surface alloy with different topographies of the solidified melt. The characterization of the generated topographies and their tribological properties is conducted by means of pin-on-disk and nanoindenter hardness measurements of the remelted surfaces. Furthermore, x-ray diffraction analyses provide the basis for the discussion of newly formed phases. The results demonstrate that surface treatment with burst pulses has a significant influence on the tribological properties, which can be manifested in an increase or decrease in the coefficient of friction or wear.

1.
K. U.
Kainer
,
Metal Matrix Composites
(
Wiley
,
Weinheim
,
2006
).
2.
C. P.
Samal
,
J. S.
Parihar
, and
D.
Chaira
, “
The effect of milling and sintering techniques on mechanical properties of Cu–graphite metal matrix composite prepared by powder metallurgy route
,”
J. Alloys Compd.
569
,
95
101
(
2013
).
3.
F.
Ahmad
,
S. J.
Lo
,
M.
Aslam
, and
A.
Haziq
, “
Tribology behaviour of alumina particles reinforced aluminium matrix composites and brake disc materials
,”
Procedia Eng.
68
,
674
680
(
2013
).
4.
P.
Shiva Shanker
, “
A review on properties of conventional and metal matrix composite materials in manufacturing of disc brake
,”
Mater. Today: Proc.
5
,
5864
5869
(
2018
).
5.
I.
Sallit
,
C.
Richard
,
R.
Adam
, and
F.
Robbe-Valloire
, “
Characterization methodology of a tribological couple
,”
Mater. Charact.
40
,
169
188
(
1998
).
6.
T.
Prater
, “
Friction stir welding of metal matrix composites for use in aerospace structures
,”
Acta Astronaut.
93
,
366
373
(
2014
).
7.
S. P.
Rawal
, “
Metal-matrix composites for space applications
,”
JOM
53
,
14
17
(
2001
).
8.
R.
Soni
,
R.
Verma
,
R.
Kumar Garg
, and
V.
Sharma
, “
A critical review of recent advances in the aerospace materials
,”
Mater. Today: Proc.
113
,
180
184
(
2024
).
9.
N.
Ackerl
,
M.
Warhanek
,
J.
Gysel
, and
K.
Wegener
, “
Ultrashort-pulsed laser machining of dental ceramic implants
,”
J. Eur. Ceram. Soc.
39
,
1635
1641
(
2019
).
10.
V.
Villerius
,
H.
Kooiker
,
J.
Post
, and
Y. T.
Pei
, “
Ultrashort pulsed laser ablation of stainless steels
,”
Int. J. Mach. Tools Manuf.
138
,
27
35
(
2019
).
11.
J.
Han
,
B.
Göksel
,
S.
Mohajernia
,
M. S.
Killian
,
J.
Vleugels
,
A.
Braem
, and
S.
Castagne
, “
Ultrashort pulsed laser ablation of zirconia toughened alumina: Material removal mechanism and surface characteristics
,”
Appl. Surf. Sci.
615
,
156407
(
2023
).
12.
J.
Molinuevo
,
E.
Rodríguez-Vidal
,
I.
Quintana
,
M.
Morales
, and
C.
Molpeceres
, “
Experimental investigation into ultrafast laser ablation of polypropylene by burst and single pulse modes
,”
Opt. Laser Technol.
152
,
108098
(
2022
).
13.
J.
Krüger
and
W.
Kautek
, “Ultrashort pulse laser interaction with dielectrics and polymers,” in Polymers and Light, Advances in Polymer Science Vol. 168, edited by T. K. Lippert (Springer, Berlin, 2004), pp. 247–290.
14.
E. V.
Golosov
et al., “
Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses
,”
Nanotechnol. Russ.
6
,
237
243
(
2011
).
15.
S.
Sakabe
,
M.
Hashida
,
S.
Tokita
,
S.
Namba
, and
K.
Okamuro
, “
Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse
,”
Phys. Rev. B
79
,
033409
(
2009
).
16.
C.
Albu
,
A.
Dinescu
,
M.
Filipescu
,
M.
Ulmeanu
, and
M.
Zamfirescu
, “
Periodical structures induced by femtosecond laser on metals in air and liquid environments
,”
Appl. Surf. Sci.
278
,
347
351
(
2013
).
17.
X.
Sedao
et al., “
Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification
,”
ACS Nano
10
,
6995
7007
(
2016
).
18.
G. D.
Tsibidis
,
A.
Mimidis
,
E.
Skoulas
,
S. V.
Kirner
,
J.
Krüger
,
J.
Bonse
, and
E.
Stratakis
, “
Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams
,”
Appl. Phys. A
124
,
27
(
2018
).
19.
T.
Wu
,
B.
Voisiat
,
M.
Soldera
,
F.
Soldera
, and
A. F.
Lasagni
, “
Fabrication of gradient periodic surface structures on stainless steel using direct laser interference patterning
,”
Adv. Eng. Mater.
26
,
2400500
(
2024
).
20.
J.
Bonse
,
S. V.
Kirner
,
M.
Griepentrog
,
D.
Spaltmann
, and
J.
Krüger
, “
Femtosecond laser texturing of surfaces for tribological applications
,”
Materials
11
,
801
(
2018
).
21.
J.
Bonse
,
S.
Höhm
,
A.
Rosenfeld
, and
J.
Krüger
, “
Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air
,”
Appl. Phys. A
110
,
547
551
(
2013
).
22.
J.
Bonse
,
J.
Krüger
,
S.
Höhm
, and
A.
Rosenfeld
, “
Femtosecond laser-induced periodic surface structures
,”
J. Laser Appl.
24
,
042006
(
2012
).
23.
M.
Füle
,
A. Gárdián, J. Budai, and Z. Tóth
, “
Comparative study of the surface nanostructure formation on different surfaces generated by low number of fs laser pulses
,”
J. Laser Micro/Nanoeng.
10
,
74
80
(
2015
).
24.
Y.
Pan
et al., “
Threshold dependence of deep- and near-subwavelength ripples formation on natural MoS 2 induced by femtosecond laser
,”
Sci. Rep.
6
,
19571
(
2016
).
25.
A.
Borowiec
and
H. K.
Haugen
, “
Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses
,”
Appl. Phys. Lett.
82
,
4462
4464
(
2003
).
26.
S.
Höhm
,
A.
Rosenfeld
,
J.
Krüger
, and
J.
Bonse
, “
Femtosecond laser-induced periodic surface structures on silica
,”
J. Appl. Phys.
112
,
014901
(
2012
).
27.
D.
Dufft
,
A.
Rosenfeld
,
S. K.
Das
,
R.
Grunwald
, and
J.
Bonse
, “
Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO
,”
J. Appl. Phys.
105
,
034908
(
2009
).
28.
S. K.
Das
,
D.
Dufft
,
A.
Rosenfeld
,
J.
Bonse
,
M.
Bock
, and
R.
Grunwald
, “
Femtosecond-laser-induced quasiperiodic nanostructures on TiO 2 surfaces
,”
J. Appl. Phys.
105
,
084912
(
2009
).
29.
C.
Kunz
,
J. F.
Bartolomé
,
E.
Gnecco
,
F. A.
Müller
, and
S.
Gräf
, “
Selective generation of laser-induced periodic surface structures on Al 2O 3-ZrO 2-Nb composites
,”
Appl. Surf. Sci.
434
,
582
587
(
2018
).
30.
V.
Oliveira
,
S. P.
Sharma
,
M.
de Moura
,
R.
Moreira
, and
R.
Vilar
, “
Surface treatment of CFRP composites using femtosecond laser radiation
,”
Opt. Lasers Eng.
94
,
37
43
(
2017
).
31.
A. Y.
Vorobyev
and
C.
Guo
, “
Direct femtosecond laser surface nano/microstructuring and its applications
,”
Laser Photonics Rev.
7
,
385
407
(
2013
).
32.
A.
Cunha
et al., “
Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of staphylococcus aureus and biofilm formation
,”
Appl. Surf. Sci.
360
,
485
493
(
2016
).
33.
M.
Martínez-Calderon
,
A.
Rodríguez
,
A.
Dias-Ponte
,
M. C.
Morant-Miñana
,
M.
Gómez-Aranzadi
, and
S. M.
Olaizola
, “
Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS
,”
Appl. Surf. Sci.
374
,
81
89
(
2016
).
34.
Z.
Wang
,
Q.
Zhao
, and
C.
Wang
, “
Reduction of friction of metals using laser-induced periodic surface nanostructures
,”
Micromachines
6
,
1606
1616
(
2015
).
35.
J.
Voyer
et al., “
Sub-micro laser modifications of tribological surfaces
,”
Mater. Perform. Charact.
6
,
42
(
67
2017
).
36.
J.
Wu
,
K.
Yin
,
S.
Xiao
,
Z.
Wu
,
Z.
Zhu
,
J.-A.
Duan
, and
J.
He
, “
Laser fabrication of bioinspired gradient surfaces for wettability applications
,”
Adv. Mater. Interfaces
8
,
2001610
(
2021
).
37.
F.
Chen
,
D.
Zhang
,
Q.
Yang
,
J.
Yong
,
G.
Du
,
J.
Si
,
F.
Yun
, and
X.
Hou
, “
Bioinspired wetting surface via laser microfabrication
,”
ACS Appl. Mater. Interfaces
5
,
6777
6792
(
2013
).
38.
F. A.
Müller
,
C.
Kunz
, and
S.
Gräf
, “
Bio-inspired functional surfaces based on laser-induced periodic surface structures
,”
Materials
9
,
476
(
2016
).
39.
K.
Mensink
,
E. H.
Penilla
,
P.
Martínez-Torres
,
N.
Cuando-Espitia
,
S.
Mathaudhu
, and
G.
Aguilar
, “
High repetition rate femtosecond laser heat accumulation and ablation thresholds in cobalt-binder and binderless tungsten carbides
,”
J. Mater. Process. Technol.
266
,
388
396
(
2019
).
40.
P.
Lickschat
,
D.
Metzner
, and
S.
Weißmantel
, “
Fundamental investigations of ultrashort pulsed laser ablation on stainless steel and cemented tungsten carbide
,”
Int. J. Adv. Manuf. Technol.
109
,
1167
1175
(
2020
).
41.
A.
Elkaseer
,
J.
Lambarri
,
I.
Quintana
, and
S.
Scholz
, “Laser ablation of cobalt-bound tungsten carbide and aluminium oxide ceramic: Experimental investigation with ANN modelling and Ga optimisation,” in Sustainable Design and Manufacturing 2018, Smart Innovation, Systems and Technologies Vol. 130, edited by D. Dao, R. J. Howlett, R. Setchi, and L. Vlacic (Springer International Publishing, Cham, 2019), pp. 21–30.
42.
G.
Li
,
X.
Li
,
G.
He
,
R.
Fan
,
F.
Li
, and
S.
Ding
, “
Surface quality and material removal rate in fabricating microtexture on tungsten carbide via femtosecond laser
,”
Micromachines
14
,
1143
(
2023
).
43.
O.
Konda
,
X.
Liu
,
S.
Maegawa
, and
F.
Itoigawa
, “
Improvement of sintered tungsten-carbide surface integrity using femtosecond pulse lasers
,”
Int. J. Adv. Manuf. Technol.
121
,
5811
5821
(
2022
).
44.
S.
Marimuthu
,
J.
Dunleavey
, and
B.
Smith
, “
High-power ultrashort pulse laser machining of tungsten carbide
,”
Procedia CIRP
94
,
829
833
(
2020
).
45.
V.
Stankevič
,
A.
Čermák
,
S.
Mikalauskas
,
P.
Kožmín
,
S.
Indrišiūnas
, and
G.
Račiukaitis
, “
Processing of ultra-hard materials with picosecond pulses: From research work to industrial applications
,”
J. Laser Appl.
30
,
032202
(
2018
).
46.
D.
Metzner
,
P.
Lickschat
, and
S.
Weißmantel
, “
Investigations of qualitative aspects with burst mode ablation of silicon and cemented tungsten carbide
,”
Appl. Phys. A
125
,
411
(
2019
).
47.
D.
Metzner
,
P.
Lickschat
, and
S.
Weißmantel
, “
High-quality surface treatment using GHz burst mode with tunable ultrashort pulses
,”
Appl. Surf. Sci.
531
,
147270
(
2020
).
48.
Y.
Zhang
,
J. R. G.
Evans
, and
S.
Yang
, “
Corrected values for boiling points and enthalpies of vaporization of elements in handbooks
,”
J. Chem. Eng. Data
56
,
328
337
(
2011
).
49.
A. S.
Kurlov
and
A. I.
Gusev
, “
Tungsten carbides and W-C phase diagram
,”
Inorg. Mater.
42
,
121
127
(
2006
).
50.
P.
Rebentrost
,
A.
Engel
,
D.
Metzner
,
T.
Lampke
, and
S.
Weißmantel
, “
Case study for the formation of a surface alloy on cemented tungsten carbide using ultrashort MHz to GHz burst-pulses
,”
Appl. Surf. Sci.
641
,
158418
(
2023
).
51.
Y.
Jee
,
M. F.
Becker
, and
R. M.
Walser
, “
Laser-induced damage on single-crystal metal surfaces
,”
J. Opt. Soc. Am. B
5
,
648
(
1988
).
52.
W. C.
Oliver
and
G. M.
Pharr
, “An improved technique for determining hardness and elastic modulus using load and displacement indentation experiments,”
J. Mater. Res.
7
, 1564–1583 (
1992
).
53.
S. J.
Bull
, “
Microstructure and indentation response of tin coatings: The effect of measurement method
,”
Thin Solid Films
688
,
137452
(
2019
).
54.
S.
Zak
,
C. O. W.
Trost
,
P.
Kreiml
, and
M. J.
Cordill
, “
Accurate measurement of thin film mechanical properties using nanoindentation
,”
J. Mater. Res.
37
,
1373
1389
(
2022
).
55.
Y.-F.
Xie
,
X.-C.
Xie
,
Z.-W.
Li
,
R.-J.
Cao
,
Z.-K.
Lin
,
Q.
Li
, and
C.-G.
Lin
, “
Microstructure and properties of coarse-grained WC–10Co cemented carbides with different carbon contents during heat treatments
,”
Rare Metals
43
,
1786
1792
(
2024
).
56.
O.
Casals
and
J.
Alcalá
, “
The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments
,”
Acta Mater.
53
,
3545
3561
(
2005
).
57.
L. S.
Sigl
and
H. F.
Fischmeister
, “
On the fracture toughness of cemented carbides
,”
Acta Metall.
36
,
887
897
(
1988
).
58.
N.
Cuadrado
,
D.
Casellas
,
L.
Llanes
,
I.
Gonzalez
, and
J.
Caro
,
“Effect of crystal anisotropy on the mechanical effect of crystal anisotropy on the mechanical properties of WC embedded in WC–Co cemented carbides,” in Euro PM2011—Powder Metallurgy Conference and Exhibition, Barcelona, Spain, 9-12 October 2011 (European Powder Metallurgy Association, Brussels
,
2011
), pp. 215–220.
59.
B.
Roebuck
,
P.
Klose
, and
K. P.
Mingard
, “
Hardness of hexagonal tungsten carbide crystals as a function of orientation
,”
Acta Mater.
60
,
6131
6143
(
2012
).
60.
A.
Duszová
,
R.
Halgaš
,
M.
Bľanda
,
P.
Hvizdoš
,
F.
Lofaj
,
J.
Dusza
, and
J.
Morgiel
, “
Nanoindentation of WC–Co hardmetals
,”
J. Eur. Ceram. Soc.
33
,
2227
2232
(
2013
).
61.
K.
Bonny
,
P.
de Baets
,
Y.
Perez
,
J.
Vleugels
, and
B.
Lauwers
, “
Friction and wear characteristics of WC–Co cemented carbides in dry reciprocating sliding contact
,”
Wear
268
,
1504
1517
(
2010
).
62.
N.
Uçak
,
J.
Outeiro
,
K.
Aslantas
,
A.
Çiçek
, and
B.
Çetin
, “
Determination of the friction coefficients between uncoated WC-Co tools and L-PBF and wrought Ti-6Al-4V alloys for micro-milling simulations
,”
Procedia CIRP
117
,
281
286
(
2023
).
63.
R.
Stribeck
, “
Die Wesentlichen Eigenschaften der Gleit- und Rollenlager
,”
Z. Ver. Dtsch. Ing.
46
,
1341
1348
(
1902
).
64.
P. G.
Grützmacher
,
F. J.
Profito
, and
A.
Rosenkranz
, “
Multi-scale surface texturing in tribology—Current knowledge and future perspectives
,”
Lubricants
7
,
95
(
2019
).
65.
I.
Alves-Lopes
,
A.
Almeida
,
V.
Oliveira
, and
R.
Vilar
, “
Influence of laser surface nanotexturing on the friction behaviour of the silicon/sapphire system
,”
Opt. Laser Technol.
121
,
105767
(
2020
).
66.
R. I.
Taylor
, “
Rough surface contact modelling—A review
,”
Lubricants
10
,
98
(
2022
).
67.
M.
Ciavarella
,
J. A.
Greenwood
, and
M.
Paggi
, “
Inclusion of “interaction” in the Greenwood and Williamson contact theory
,”
Wear
265
,
729
734
(
2008
).
You do not currently have access to this content.