The widespread use of advanced electronic devices and the rapid depreciation of these items have led to a significant increase in the production and handling of electronic waste, posing a more pressing and challenging problem. Hence, the recycling and recovery of materials from electronic trash is crucial. This study focuses on the recovery of materials from electronic waste using electric field-assisted laser ablation in liquid. Initial studies are carried out on electrodes that generate electric field strengths of 125 and 1875 V/m, following laser ablation of submerged manganese targets. Scanning electron microscopy, energy dispersive x-ray, x-ray diffraction, and micro-Raman spectroscopy are used to characterize these electrodes. The investigation revealed that the electrodes are coated with Mn2O3 produced by ablating submerged manganese targets. This work is then extended to the recovery of nanoparticles on copper electrodes produced from electronic waste (e-waste) as submerged targets—(1) standard-SIM cards and (2) capacitors from discarded motherboards. Characterization of the electrodes validates the deposition of gold and tantalum oxides formed in the electrodes.

1.
W. M.
de Azevedo
,
S. de L.
Campello
,
D. L.
da Cunha
,
L. T. B.
de Mendonça
, and
O. M. M. M.
da Costa
, “
Laser ablation in liquid: An unconventional, fast, clean and straightforward technique for material preparation
,” in
Applications of Laser Ablation—Thin Film Deposition, Nanomaterial Synthesis and Surface Modification
(InTechOpen, Rijeka,
2016
).
2.
M. C.
Sportelli
,
M.
Izzi
,
A.
Volpe
,
M.
Clemente
,
R. A.
Picca
,
A.
Ancona
,
P. M.
Lugarà
,
G.
Palazzo
, and
N.
Cioffi
, “
The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials
,”
Antibiotics
7
,
67
(
2018
).
3.
D.
Zhang
,
Z.
Li
, and
K.
Sugioka
, “
Laser ablation in liquids for nanomaterial synthesis: Diversities of targets and liquids
,”
J. Phys. Photonics
3
,
042002
(
2021
).
4.
G.
Sinibaldi
,
A.
Occhicone
,
F.
Alves Pereira
,
D.
Caprini
,
L.
Marino
,
F.
Michelotti
, and
C. M.
Casciola
, “
Laser induced cavitation: Plasma generation and breakdown shockwave
,”
Phys. Fluids
31
,
103302
(
2019
).
5.
A.
De Bonis
,
M.
Sansone
,
L.
D’Alessio
,
A.
Galasso
,
A.
Santagata
, and
R.
Teghil
, “
Dynamics of laser-induced bubble and nanoparticles generation during ultra-short laser ablation of Pd in liquid
,”
J. Phys. D: Appl. Phys.
46
,
445301
(
2013
).
6.
M. R.
Kalus
,
N.
Bärsch
,
R.
Streubel
,
E.
Gökce
,
S.
Barcikowski
, and
B.
Gökce
, “
How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids—Quantification of their volume, dwell dynamics, and gas composition
,”
Phys. Chem. Chem. Phys.
19
,
7112
7123
(
2017
).
7.
A.
Deka
,
P. K.
Baruah
,
A.
Khare
, and
A.
Nath
, “
Inquest of material dissipation from cavitation bubble in laser-irradiated solid–liquid interface
,”
Radiat. Eff. Defects Solids
177
,
244
257
(
2022
).
8.
S. M.
Kharphanbuh
,
P. K.
Baruah
,
A.
Khare
, and
A.
Nath
, “
Bubble-assisted microstreaming during electrode deposition of Mn2O3 energy harvesters
,”
Phys. Chem. Chem. Phys.
26
,
13973
13978
(
2024
).
9.
D. C. K.
Rao
,
V. S.
Mooss
,
Y. N.
Mishra
, and
D.
Hanstorp
, “
Controlling bubble generation by femtosecond laser-induced filamentation
,”
Sci. Rep.
12
,
15742
(
2022
).
10.
R. A.
Ismail
and
F. A.
Fadhil
, “
Effect of electric field on the properties of bismuth oxide nanoparticles prepared by laser ablation in water
,”
J. Mater. Sci. Mater. Electron.
25
,
1435
1440
(
2014
).
11.
H.
Mozaffari
and
M. H.
Mahdieh
, “
Enhancement of ablation rate and production of colloidal nanoparticles by irradiation of metals with nanosecond pulsed laser in presence of external electric field
,”
Phys. Lett. A
383
,
646
654
(
2019
).
12.
Y.
Li
,
O. R.
Musaev
,
J. M.
Wrobel
, and
M. B.
Kruger
, “
Laser ablation in liquids of germanium in externally applied electric fields
,”
J. Laser Appl.
28
,
022004
(
2016
).
13.
S. M.
Kharphanbuh
and
A.
Nath
, “
Laser-induced plasma and cavitation bubble dynamics at manganese-water interface under external electric fields
,”
IEEE Trans. Plasma Sci.
52
,
300
309
(
2024
).
14.
D.
Sapkota
,
Y.
Li
,
O. R.
Musaev
,
J. M.
Wrobel
, and
M. B.
Kruger
, “
Effect of electric fields on tin nanoparticles prepared by laser ablation in water
,”
J. Laser Appl.
29
,
012002
(
2017
).
15.
M. H.
Mahdieh
and
H.
Mozaffari
, “
Characteristics of colloidal aluminum nanoparticles prepared by nanosecond pulsed laser ablation in deionized water in presence of parallel external electric field
,”
Phys. Lett. A
381
,
3314
3323
(
2017
).
16.
C. S.
Saraj
,
S. C.
Singh
,
G.
Verma
,
A.
Alquliah
,
W.
Li
, and
C.
Guo
, “
Rapid fabrication of CuMoO4 nanocomposites via electric field assisted pulsed-laser ablation in liquids for electrochemical hydrogen generation
,”
Appl. Surf. Sci. Adv.
13
,
100358
(
2023
).
17.
A.
Phukan
,
S. M.
Kharphanbuh
, and
A.
Nath
, “
An empirical experimental investigation on the effect of an external electric field on the behaviour of laser-induced cavitation bubbles
,”
Phys. Chem. Chem. Phys.
25
,
2477
2485
(
2023
).
18.
S.
Yang
,
W.
Cai
,
J.
Yang
, and
H.
Zeng
, “
General and simple route to micro/nanostructured hollow-sphere arrays based on electrophoresis of colloids induced by laser ablation in liquid
,”
Langmuir
25
,
8287
8291
(
2009
).
19.
S. G.
Park
and
K. K.
Murray
, “
Ambient laser ablation sampling for capillary electrophoresis mass spectrometry
,”
Rapid Commun. Mass Spectrom
27
,
1673
1680
(
2013
).
20.
R.
Gaudiuso
, “
Pulsed laser deposition of carbon-based materials: A focused review of methods and results
,”
Processes
11
,
2373
(
2023
).
21.
M. T.
Islam
and
U.
Iyer-Raniga
, “
Life cycle assessment of e-waste management system in Australia: Case of waste printed circuit board (PCB)
,”
J. Clean Prod.
418
,
138082
(
2023
).
22.
M.
Ottoni
,
P.
Dias
, and
L. H.
Xavier
, “
A circular approach to the e-waste valorization through urban mining in Rio de Janeiro, Brazil
,”
J. Clean Prod.
261
,
120990
(
2020
).
23.
V.
Gopikrishnan
,
A.
Vignesh
,
M.
Radhakrishnan
,
J.
Joseph
,
T.
Shanmugasundaram
,
M.
Doble
, and
R.
Balagurunathan
, “
Microbial leaching of heavy metals from e-waste: Opportunities and challenges
,” in
Biovalorisation of Wastes to Renewable Chemicals and Biofuels
(
Elsevier
,
New York
,
2019
), pp.
189
216
.
24.
D.
Dutta
,
R.
Rautela
,
L. K. S.
Gujjala
,
D.
Kundu
,
P.
Sharma
,
M.
Tembhare
, and
S.
Kumar
, “
A review on recovery processes of metals from E-waste: A green perspective
,”
Sci. Total Environ.
859
,
160391
(
2023
).
25.
S. C.
Chakraborty
,
M. W. U.
Zaman
,
M.
Hoque
,
M.
Qamruzzaman
,
J. U.
Zaman
,
D.
Hossain
,
B. K.
Pramanik
,
L. N.
Nguyen
,
L. D.
Nghiem
,
M.
Mofijur
,
M. I. H.
Mondal
,
J. A.
Sithi
,
S. M. S.
Shahriar
,
M. A. H.
Johir
, and
M. B.
Ahmed
, “
Metals extraction processes from electronic waste: Constraints and opportunities
,”
Environ. Sci. Pollut. Res. Int.
29
,
32651
32669
(
2022
).
26.
H.
Zeng
,
X. W.
Du
,
S. C.
Singh
,
S. A.
Kulinich
,
S.
Yang
,
J.
He
, and
W.
Cai
, “
Nanomaterials via laser ablation/irradiation in liquid: A review
,”
Adv. Funct. Mater.
22
,
1333
1353
(
2012
).
27.
A.
Subhan
,
A. H. I.
Mourad
, and
Y.
Al-Douri
, “
Influence of laser process parameters, liquid medium, and external field on the synthesis of colloidal metal nanoparticles using pulsed laser ablation in liquid: A review
,”
Nanomaterials
12
,
2144
(
2022
).
28.
T.
Sasaki
,
Y.
Shimizu
, and
N.
Koshizaki
, “
Preparation of metal oxide-based nanomaterials using nanosecond pulsed laser ablation in liquids
,”
J. Photochem. Photobiol. A Chem.
182
,
335
341
(
2006
).
29.
S.
Manikandan
,
D.
Inbakandan
,
C.
Valli Nachiyar
, and
S.
Karthick Raja Namasivayam
, “
Towards sustainable metal recovery from e-waste: A mini review
,”
Sustain. Chem. Environ.
2
,
100001
(
2023
).
30.
A.
Bajpai
,
P.
Kumbhakar
,
C. S.
Tiwary
, and
K.
Biswas
, “
Conducting graphene synthesis from electronic waste
,”
ACS Sustain. Chem. Eng.
9
,
14090
14100
(
2021
).
31.
S.
Sharma
,
P.
Chauhan
, and
S.
Husain
, “
Structural and optical properties of Mn2O3 nanoparticles & its gas sensing applications
,”
Adv. Mater. Proc.
1
,
220
225
(
2021
).
32.
J.
Kaur
,
A.
Khanna
,
R.
Kumar
, and
R.
Chandra
, “
Growth and characterization of Cu2O and CuO thin films
,”
J. Mater. Sci. Mater. Electron.
33
,
16154
16166
(
2022
).
33.
G.
Gouadec
and
P.
Colomban
, “
Raman spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties
,”
Prog. Cryst. Growth Charact. Mater.
53
,
1
56
(
2007
).
34.
X.
Niu
,
H.
Wei
,
K.
Tang
,
W.
Liu
,
G.
Zhao
, and
Y.
Yang
, “
Solvothermal synthesis of 1D nanostructured Mn2O3: Effect of Ni2+ and Co2+ substitution on the catalytic activity of nanowires
,”
RSC Adv.
5
,
66271
66277
(
2015
).
35.
B. K.
Sahu
,
R.
Beura
,
N.
Behera
,
D. N.
Joshi
, and
A. K.
Pal
, “
Raman spectroscopy for defects and crystalline disorder in oxide semiconductors
,” in
Defect-Induced Magnetism in Oxide Semiconductors
(
Elsevier
,
New York
,
2023
), pp.
367
393
.
36.
D.
Prasanth
,
K. P.
Sibin
, and
H. C.
Barshilia
, “
Optical properties of sputter deposited nanocrystalline CuO thin films
,”
Thin Solid Films
673
,
78
85
(
2019
).
37.
S. M.
Kharphanbuh
and
A.
Nath
, “
External electric field assisted laser-induced plasma and bubble dynamics for optimizing Mn2O3 nanoparticles as UV emitters.
,”
J. Anal. At. Spectrom.
40
,
186
194
(
2025
).
38.
P.
Marmottant
and
S.
Hilgenfeldt
, “
Controlled vesicle deformation and lysis by single oscillating bubbles
,”
Nature
423
,
153
156
(
2003
).
39.
S.
Rajkumar
,
E.
Elanthamilan
,
T. E.
Balaji
,
A.
Sathiyan
,
N. E.
Jafneel
, and
J. P.
Merlin
, “
Recovery of copper oxide nanoparticles from waste SIM cards for supercapacitor electrode material
,”
J. Alloys Compd.
849
,
156582
(
2020
).
40.
G.
Compagnini
,
A. A.
Scalisi
, and
O.
Puglisi
, “
Production of gold nanoparticles by laser ablation in liquid alkanes
,”
J. Appl. Phys.
94
,
7874
7877
(
2003
).
41.
R. M.
Tilaki
,
A. I.
Zad
, and
S. M.
Mahdavi
, “
The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation
,”
J. Nanopart. Res.
9
,
853
860
(
2007
).
42.
A.
Sikander
,
S.
Kelly
,
K.
Kuchta
,
A.
Sievers
,
T.
Willner
, and
A. S.
Hursthouse
, “
Hybrid leaching of tantalum and other valuable metals from tantalum capacitor waste
,”
Environ. Sci. Pollut. Res. Int.
30
,
59621
59631
(
2023
).
43.
B.
Debnath
,
A.
Das
,
P.
Anil Chowdary
, and
S.
Bhattacharyya
,
Development in E-Waste Management; Sustainability and Circular Economy Aspects
(
CRC
, Boca Raton, FL,
2023
).
44.
T.
Tsuji
,
K.
Iryo
,
N.
Watanabe
, and
M.
Tsuji
, “
Preparation of silver nanoparticles by laser ablation in solution: Influence of laser wavelength on particle size
,”
Appl. Surf. Sci.
202
,
80
85
(
2002
).
45.
A. A.
Menazea
, “
Femtosecond laser ablation-assisted synthesis of silver nanoparticles in organic and inorganic liquids medium and their antibacterial efficiency
,”
Radiat. Phys. Chem.
168
,
108616
(
2020
).
46.
R. R.
Krishnan
,
K. G.
Gopchandran
,
V. P.
MahadevanPillai
,
V.
Ganesan
, and
V.
Sathe
, “
Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films
,”
Appl. Surf. Sci.
255
,
7126
7135
(
2009
).
47.
C.
Joseph
,
P.
Bourson
, and
M. D.
Fontana
, “
Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy
,”
J. Raman Spectrosc.
43
,
1146
1150
(
2012
).
You do not currently have access to this content.